• Title/Summary/Keyword: In vivo biotinylation

Search Result 3, Processing Time 0.02 seconds

Novel Vectors for the Convenient Cloning and Expression of In Vivo Biotinylated Proteins in Escherichia coli

  • Cho, Eun-Wie;Park, Jung-Hyun;Na, Shin-Young;Kim, Kil-Lyong
    • BMB Reports
    • /
    • v.32 no.5
    • /
    • pp.497-501
    • /
    • 1999
  • Biotinylation of recombinant proteins is a powerful tool for the detection and analysis of proteins of interest in a large variety of assay systems. The recent development of in vivo biotinylation techniques in E. coli has opened new possibilities for the production of site-specifically biotinylated proteins without the need for further manipulation after the isolation of the recombinantly expressed proteins. In the present study, a novel vector set was generated which allows the convenient cloning and expression of proteins of interest fused with an N-terminal in vivo biotinylated thioredoxin (TRX) protein. These vectors were derived from the previously reported pBIOTRX vector into which was incorporated part of the pBluescript II+phagemid multiple cloning site (MCS), amplified by PCR using a pair of sophisticated oligonucleotide primers. The functionality of these novel vectors was examined in this system by recombinant expression of rat transforming growth factor-$\beta$. Western-blot analysis using TRX-specific antibodies or peroxidase-conjugated streptavidin confirmed the successful induction of the fusion protein and the in vivo conjugation of biotin molecules, respectively. The convenience of molecular subcloning provided by the MCS and the effective in vivo biotinylation of proteins of interest makes this novel vector set an interesting alternative for the production of biotinylated proteins.

  • PDF

Different Influences of Biotinylation and PEGylation on Cationic and Anionic Proteins for Spheroid Penetration and Intracellular Uptake to Cancer Cells

  • Jung, Won Ho;You, Gayeon;Mok, Hyejung
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.9
    • /
    • pp.1209-1216
    • /
    • 2022
  • To better understand the effects of PEGylation and biotinylation on the delivery efficiency of proteins, the cationic protein lysozyme (LZ) and anionic protein bovine serum albumin (BSA) were chemically conjugated with poly(ethylene glycol) (PEG) and biotin-PEG to primary amine groups of proteins using N-hydroxysuccinimide reactions. Four types of protein conjugates were successfully prepared: PEGylated LZ (PEG-LZ), PEGylated BSA (PEG-BSA), biotin-PEG-conjugated LZ (Bio-PEG-LZ), and biotin-PEG-conjugated BSA (Bio-PEG-BSA). PEG-LZ and Bio-PEG-LZ exhibited a lower intracellular uptake than that of LZ in A549 human lung cancer cells (in a two-dimensional culture). However, Bio-PEG-BSA showed significantly improved intracellular delivery as compared to that of PEG-BSA and BSA, probably because of favorable interactions with cells via biotin receptors. For A549/fibroblast coculture spheroids, PEG-LZ and PEG-BSA exhibited significantly decreased tissue penetration as compared with that of unmodified proteins. However, Bio-PEG-BSA showed tissue penetration comparable to that of unmodified BSA. In addition, citraconlyated LZ (Cit-LZ) showed reduced spheroid penetration as compared to that of LZ, probably owing to a decrease in protein charge. Taken together, chemical conjugation of targeting ligands-PEG to anionic proteins could be a promising strategy to improve intracellular delivery and in vivo activity, whereas modifications of cationic proteins should be more delicately designed.

Visualization of the binding between gintonin, a Panax ginseng-derived LPA receptor ligand, and the LPA receptor subtypes and transactivation of the EGF receptor

  • Choi, Sun-Hye;Lee, Ra Mi;Cho, Han-Sung;Hwang, Sung Hee;Hwang, Hong-Ik;Rhim, Hyewhon;Kim, Hyoung-Chun;Kim, Do-Geun;Cho, Ik-Hyun;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.46 no.3
    • /
    • pp.348-356
    • /
    • 2022
  • Background: Gintonin is a ginseng-derived exogenous G-protein-coupled lysophosphatidic acid (LPA) receptor ligand. Gintonin exerts its neuronal and non-neuronal in vitro and in vivo effects through LPA receptor subtypes. However, it is unknown whether gintonin can bind to the plasma membrane of cells and can transactivate the epidermal growth factor (EGF) receptor. In the present study, we examined whether gintonin-biotin conjugates directly bound to LPA receptors and transactivated the EGF receptor. Methods: We designed gintonin-biotin conjugates through gintonin biotinylation and examined whether gintonin-biotin conjugate binding sites co-localized with the LPA receptor subtype binding sites. We further examined whether gintonin-biotin transactivated the EGF receptor via LPA receptor regulation via phosphor-EGF and cell migration assays. Results: Gintonin-biotin conjugates elicit [Ca2+]i transient similar to that observed with unbiotinylated gintonin in cultured PC3 cells, suggesting that biotinylation does not affect physiological activity of gintonin. We proved that gintonin-biotin conjugate binding sites co-localized with the LPA1/6 receptor binding sites. Gintonin-biotin binding to the LPA1 receptor transactivates the epidermal growth factor (EGF) receptor through phosphorylation, while the LPA1/3 receptor antagonist, Ki16425, blocked phosphorylation of the EGF receptor. Additionally, an EGF receptor inhibitor AG1478 blocked gintonin-biotin conjugate-mediated cell migration. Conclusions: We observed the binding between ginseng-derived gintonin and the plasma membrane target proteins corresponding to the LPA1/6 receptor subtypes. Moreover, gintonin transactivated EGF receptors via LPA receptor regulation. Our results suggest that gintonin directly binds to the LPA receptor subtypes and transactivates the EGF receptor. It may explain the molecular basis of ginseng physiology/pharmacology in biological systems.