• Title/Summary/Keyword: In-memory Storage

Search Result 795, Processing Time 0.033 seconds

Hybrid in-memory storage for cloud infrastructure

  • Kim, Dae Won;Kim, Sun Wook;Oh, Soo Cheol
    • Journal of Internet Computing and Services
    • /
    • v.22 no.5
    • /
    • pp.57-67
    • /
    • 2021
  • Modern cloud computing is rapidly changing from traditional hypervisor-based virtual machines to container-based cloud-native environments. Due to limitations in I/O performance required for both virtual machines and containers, the use of high-speed storage (SSD, NVMe, etc.) is increasing, and in-memory computing using main memory is also emerging. Running a virtual environment on main memory gives better performance compared to other storage arrays. However, RAM used as main memory is expensive and due to its volatile characteristics, data is lost when the system goes down. Therefore, additional work is required to run the virtual environment in main memory. In this paper, we propose a hybrid in-memory storage that combines a block storage such as a high-speed SSD with main memory to safely operate virtual machines and containers on main memory. In addition, the proposed storage showed 6 times faster write speed and 42 times faster read operation compared to regular disks for virtual machines, and showed the average 12% improvement of container's performance tests.

File System for Performance Improvement in Multiple Flash Memory Chips (다중 플래시 메모리 기반 파일시스템의 성능개선을 위한 파일시스템)

  • Park, Je-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.3
    • /
    • pp.17-21
    • /
    • 2008
  • Application of flash memory in mobile and ubiquitous related devices is rapidly being increased due to its low price and high performance. In addition, some notebook computers currently come out into market with a SSD(Solid State Disk) instead of hard-drive based storage system. Regarding this trend, applications need to increase the storage capacity using multiple flash memory chips for larger capacity sooner or later. Flash memory based storage subsystem should resolve the performance bottleneck for writing in perspective of speed and lifetime according to its physical property. In order to make flash memory storage work with tangible performance, reclaiming of invalid regions needs to be controlled in a particular manner to decrease the number of erasures and to distribute the erasures uniformly over the whole memory space as much as possible. In this paper, we study the performance of flash memory recycling algorithms and demonstrate that the proposed algorithm shows acceptable performance for flash memory storage with multiple chips. The proposed cleaning method partitions the memory space into candidate memory regions, to be reclaimed as free, by utilizing threshold values. The proposed algorithm handles the storage system in multi-layered style. The impact of the proposed policies is evaluated through a number of experiments.

  • PDF

Analyzing the Overhead of the Memory Mapped File I/O for In-Memory File Systems (메모리 파일시스템에서 메모리 매핑을 이용한 파일 입출력의 오버헤드 분석)

  • Choi, Jungsik;Han, Hwansoo
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.10
    • /
    • pp.497-503
    • /
    • 2016
  • Emerging next-generation storage technologies such as non-volatile memory will help eliminate almost all of the storage latency that has plagued previous storage devices. In conventional storage systems, the latency of slow storage devices dominates access latency; hence, software efficiency is not critical. With low-latency storage, software costs can quickly dominate memory latency. Hence, researchers have proposed the memory mapped file I/O to avoid the software overhead. Mapping a file into the user memory space enables users to access the file directly. Therefore, it is possible to avoid the complicated I/O stack. This minimizes the number of user/kernel mode switchings. In addition, there is no data copy between kernel and user areas. Despite of the benefits in the memory mapped file I/O, its overhead still needs to be addressed, as the existing mechanism for the memory mapped file I/O is designed for slow block devices. In this paper, we identify the overheads of the memory mapped file I/O via experiments.

A Memory Mapping Technique to Reduce Data Retrieval Cost in the Storage Consisting of Multi Memories (다중 메모리로 구성된 저장장치에서 데이터 탐색 비용을 줄이기 위한 메모리 매핑 기법)

  • Hyun-Seob Lee
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.1
    • /
    • pp.19-24
    • /
    • 2023
  • Recently, with the recent rapid development of memory technology, various types of memory are developed and are used to improve processing speed in data management systems. In particular, NAND flash memory is used as a main media for storing data in memory-based storage devices because it has a nonvolatile characteristic that it can maintain data even at the power off state. However, since the recently studied memory-based storage device consists of various types of memory such as MRAM and PRAM as well as NAND flash memory, research on memory management technology is needed to improve data processing performance and efficiency of media in a storage system composed of different types of memories. In this paper, we propose a memory mapping scheme thought technique for efficiently managing data in the storage device composed of various memories for data management. The proposed idea is a method of managing different memories using a single mapping table. This method can unify the address scheme of data and reduce the search cost of data stored in different memories for data tiering.

Performane Modeling of Flash Memory Storage Systems Using Simulink (시뮬링크를 이용한 플래시메모리 저장장치 성능 모델링)

  • Min, Hang Jun;Park, Jeong Su;Lee, Joo Il;Min, Sang Lyul;Kim, Kanghee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.5
    • /
    • pp.263-272
    • /
    • 2011
  • The complexity of flash memory based storage systems is high due to diverse host interfaces and other design choices such as mapping granularity, flash memory controller execution models and so on. Thus, it is possible that the actual performance after implementation is not consistent with the target performance. This paper demonstrates that the performance prediction of flash memory based storage systems is possible through performance modeling that takes into account various design parameters. In the performance modeling, the FTL, which is the core element of flash memory based storage systems, is modeled as a set of (copy-on-write) logs and their interactions. Also, the flash memory controller is modeled based on the classification proposed in the design of the Ozone flash controller. In this study, the performance model has been implemented using Simulink and experimental results are presented and analyzed.

Design of Optimized SWAP System for Next-Generation Storage Devices (차세대 저장 장치에 최적화된 SWAP 시스템 설계)

  • Han, Hyuck
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.4
    • /
    • pp.9-16
    • /
    • 2015
  • On modern operating systems such as Linux, virtual memory is a general way to provide a large address space to applications by using main memory and storage devices. Recently, storage devices have been improved in terms of latency and bandwidth, and it is expected that applications with large memory show high-performance if next-generation storage devices are considered. However, due to the overhead of virtual memory subsystem, the paging system can not exploit the performance of next-generation storage devices. In this study, we propose several optimization techniques to extend memory with next-generation storage devices. The techniques are to allocate block addresses of storage devices for write-back operations as well as to configure the system parameters, and we implement the techniques on Linux 3.14.3. Our evaluation through using multiple benchmarks shows that our system has 3 times (/24%) better performance on average than the baseline system in the micro(/macro)-benchmark.

Hardware Platforms for Flash Memory/NVRAM Software Development

  • Nam, Eyee-Hyun;Choi, Ki-Seok;Choi, Jin-Yong;Min, Hang-Jun;Min, Sang-Lyul
    • Journal of Computing Science and Engineering
    • /
    • v.3 no.3
    • /
    • pp.181-194
    • /
    • 2009
  • Flash memory is increasingly being used in a wide range of storage applications because of its low power consumption, low access latency, small form factor, and high shock resistance. However, the current platforms for flash memory software development do not meet the ever-increasing requirements of flash memory applications. This paper presents three different hardware platforms for flash memory/NVRAM (non-volatile RAM) software development that overcome the limitations of the current platforms. The three platforms target different types of host system and provide various features that facilitate the development and verification of flash memory/NVRAM software. In this paper, we also demonstrate the usefulness of the three platforms by implementing three different types of storage system (one for each platform) based on them.

Regular File Access of Embedded System Using Flash Memory as a Storage (플래시 메모리를 저장매체로 사용하는 임베디드 시스템에서의 정규파일 접근)

  • 이은주;박현주
    • Journal of Information Technology Applications and Management
    • /
    • v.11 no.1
    • /
    • pp.189-200
    • /
    • 2004
  • Recently Flash Memory which is small and low-powered is widely used as a storage of embedded system, because an embedded system requests portability and a fast response. To resolve a difference of access time between a storage and RAM, Linux is using disk caching which copies a part of file on disk into RAM. It is not also an exception on embedded system. A READ access-time of flash memory is similar to RAMs. So, when a process on an embedded system reads data, it is similar to the time to access cached data in RAM and to access directly data on a flash memory. On the embedded system using limited memory, using a disk cache is that wastes much time and memory spaces to manage it and can not reflects the characteristic of a flash memory. This paper proposes the regular file access of limited using a page cache in the file system based on a flash memory and reflects the characteristic of a flash memory. The proposed algorithm minimizes power consumption because access numbers of the RAM are reduced and doesn't waste a memory space because it accesses directly to a flash memory Therefore, the performance improvement of the system applying the proposed algorithm is expected.

  • PDF

An efficient Storage Reclamation Algorithm for RISC Parallel Processing (RISC 병렬 처리를 위한 기억공간의 효율적인 활용 알고리즘)

  • 이철원;임인칠
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.9
    • /
    • pp.703-711
    • /
    • 1991
  • In this paper, an efficient storage reclamation algorithm for RISC parallel processing in the object orented programming environments is presented. The memory management for the dynamic memory allocation and the frequent memory access in object oriented programming is the main factor that decreases RISC parallel processing performance. The proposed algorithm can be efficiently allocated the memory space of RISCy computer which is required the frequent memory access, so it can be increased RISC parallel processing performance. The proposed algorithm is verified the efficiency by implementing C language on SUN SPARC(4.3 BSD UNIX).

  • PDF

Information Storage Devices and Biological Mechanism of Information Storage (정보저장기기와 생물학적 정보저장 매커니즘 비교)

  • Lee, Seung-Yop;Kim, Kyung-Ho;Yang, Woo-Sung;Park, Young-Phil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.582-587
    • /
    • 2002
  • Current information storage devices, such as HDD, CD/DVD-ROM/RW, probe-based memory and hologram memory, are compared with biological information storage mechanisms in DNA and brain memory. Newly developed approaches to overcome the limit of storage capacity are introduced in both magnetic and optical recording devices. Linear and areal density of information stored in the biological and mechanical storages are compared for the applications and developments of new storage devices.

  • PDF