• Title/Summary/Keyword: Incheon Airport Maglev Railway

Search Result 11, Processing Time 0.031 seconds

A Study on Electric Power Supply Analysis of Urban MAGLEV Vehicle (도시형 자기부상열차의 전력특성 분석에 관한 연구)

  • Ahn, Young-Hoon
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.157-161
    • /
    • 2008
  • The main purpose of this study is to analysis of urban MAGLEV vehicle for the Incheon International Airport Maglev railway, in the process of construction at the moment, in Korea. For analysis of urban MAGLEV, we have measurement power a special quality of MAGLEV operating the center science museum in Deajeon. 1) The power property related to urban MAGLEV vehicle demand on the Incheon International Airport Maglev railway track and substation capacity compared to the result given. 2) The optimum design of substation is determined based on the analysis. 3) The equipments of substation are determined based on the analysis. The result of measurement performance, therefore, enables us to reflect the good property, to the power supply design. The result of research performance, therefore, enables us to reflect the Power Supply System design for the stabilized and economized MAGLEV operation.

  • PDF

Dynamic Interaction Analysis of Maglev and 3 Span Continuous Guideway Based on 3 D Multibody Dynamic Simulation (3차원 다물체동역학 시뮬레이션 기반 자기부상열차와 3경간 연속교 동적상호작용 해석)

  • Han, Jong-Boo;Kim, Ki-Jung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.4
    • /
    • pp.409-416
    • /
    • 2016
  • This study aims to investigate dynamic interaction characteristics between Maglev train and 3 span continuous guideway. The integrated model including a 3D full vehicle model based on multibody dynamics, flexible guideway by a modal superposition method, and levitation electromagnets with the feedback controller is proposed. The proposed model was applied to the Incheon Airport Maglev Railway to analyze the dynamic response of the vehicle and guideway from the numerical simulation. Using field test data of air gap and guideway deflections, obtained from the Incheon Airport Maglev Railway, the analysis method is verified. From the results, it is confirmed that Maglev railway system are designed and constructed safely according to the design criteria.

Verification of an Analysis Method for Maglev Train-Guideway Interaction Using Field Measurement Data (현장 계측치와의 비교를 통한 자기부상열차-가이드웨이 상호작용 해석기법 검증)

  • Lee, Jin Ho;Kim, Lee Hyun;Kim, Sung Il
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.4
    • /
    • pp.233-244
    • /
    • 2014
  • In this study, an analysis method for maglev train-guideway interaction is verified using field measurement data. The cabin and bogies of the maglev train are modeled as rigid bodies that are allowed to have heave and pitch motions. Levitation forces from the electromagnetic suspensions on the bogies are controlled using an active control algorithm. The guideway is represented using the Euler-Bernoulli beam. Considering rigorously the changes in air-gaps and material points at which the levitation forces are applied due to the pitch motions of the bogies, dynamic analysis of maglev train-guideway interaction is performed. Using field measurement data, obtained from the Incheon Airport Maglev Railway, the analysis method is verified. Accuracy of the analysis method is investigated. It is determined that the structures in the railway are designed and constructed safely according to the design code for maglev railways.

Characteristic Analysis of a Linear Induction Motor for 200-km/h Maglev

  • Jeong, Jae-Hoon;Lim, Jae-Won;Park, Do-Young;Choi, Jang-Young;Jang, Seok-Myeong
    • International Journal of Railway
    • /
    • v.8 no.1
    • /
    • pp.15-20
    • /
    • 2015
  • As a result of the current population concentrations in urban centers, demand for intercity transportation is increasing rapidly. Railway transportation is becoming popular as an intercity transportation because of its timely service, travel speeds and transport efficiency. Among the many railway systems, the innovative and environmentally friendly maglev system has been rated very highly as the next-generation intercity railway system. Linear induction motors are widely used for the propulsion of maglev trains because of their light weight and low construction costs. The urban maglev that was recently completed in Incheon airport site employs a 110km/h class linear induction motor. However, this system was designed to meet requirements for inner-city operations and is not suitable as an intercity transportation system, which requires medium to high speeds. Therefore, this study deals with the characteristics and designs of linear induction motors used for the propulsion of maglev trains that can be used as intercity trains. Rail car specifications for high-speed trains have been presented, and the characteristics of linear induction motors that can be used for the propulsion of these trains have been derived using the finite element method (FEM).

Manufacturing and Performance Test for Bogie System of Urban Maglev (도시형 자기부상열차의 주행장치시스템 제작 및 성능 시험)

  • Yu, Young-Don;Lee, Nam-Jin;Kang, Kwang-Ho;Lee, Won-Sang;Han, Hyung-Suk
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.590-596
    • /
    • 2010
  • Maglev vehicles levitated and propelled by electromagnet as non-contact between vehicle and guide rail is environmentally friendly transport system which have many advantages like ride comfort and guide way construction costs. As a goal of commercial operation at Incheon International Airport in 2012, development of vehicle is underway and proto-vehicle is test running at KIMM. The maglev bogie system of proto-vehicle, like railway vehicle, has functions to support weight of vehicle, transfer force of brake and propulsion and improve ride comfort through insulation of vibration and improve curve negotiation capability. The main components of a bogie are two modules consisted of electromagnetic, frame and linear motor, two tie beams to connect two modules and steering system to improve curve negotiation capability. The purpose of this paper is to describe general specification, structure, manufacturing process, performance testing, ride comfort of proto-vehicle and bogie system.

  • PDF

Analysis of Dynamic Responses of Urban Maglev Guideway (도시형 자기부상열차 가이드웨이의 동적거동특성 분석)

  • Hong, Yu-Na;Chung, Won-Seok;Yeo, In-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.1
    • /
    • pp.115-121
    • /
    • 2009
  • Maglev guideway is expected to be a new public transportation for future because of its environmental and special characteristics. Recently, Korean government initiated an urban maglev project to build a commercial line in Incheon International Airport by year 2012. For practical use of UTM02, it is essential not only to verify the performances of the vehicle but also to formulate the design rules of Maglev Guideway. In this paper, maglev guideway is analyzed by Finite Element Method and then obtained dynamic characteristics such as displacements, acceleration and impact factor.

Dynamic Interaction Analysis between Maglev Train with Airgap Control Algorithm Based on Acceleration Feedback and Guideway (가속도 되먹임 기반 부상공극제어기법을 이용한 자기부상열차-가이드웨이 상호작용 해석)

  • Lee, Jin Ho;Kim, Sung Il
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.2
    • /
    • pp.193-199
    • /
    • 2016
  • Since the variations of electromagnetic suspension forces of maglev trains have close relations with the acceleration of the levitated bodies, it is basic to control the levitation forces using the measured acceleration of vehicles. In this study, an airgap control algorithm based on acceleration feedback is applied to maglev trains and a dynamic analysis method is developed considering maglev train-guideway interaction. Using the developed method, dynamic behaviors of a maglev train-guideway interaction system are investigated. It is observed from the analysis that the current design guidelines can be satisfied when the proposed airgap control algorithm is employed. Using the contorl algorithm, the current guidelines can be improved and economical maglev railway guideway structures can be designed.

Vibration Characteristic of Full Weight Case Maglev Vehicle Running at Switching System (만차 조건 자기부상열차의 분기기 구간 주행 시 진동 특성)

  • Shin, Hyeon-Jae;Lee, Jong-Min;Kim, Chang-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.678-684
    • /
    • 2011
  • In 2013, Korea will become the world's second country to operate the urban Maglev system with the inauguration of demonstration line at Incheon International Airport. A prototype Maglev is under the test at KIMM's(Korea Institute of Machinery & Materials, Daejeon) track. This Maglev is an EMS(Electromagnetic suspension)-type vehicle of controlled $8{\pm}3mm$ air gap. The air gap between electromagnet and the guiderail in an EMS-type Maglev must be maintained within an allowable deviation by controlling the magnet. The air gap response is strongly dependent on the structural characteristics of the elevated guideway. For this reason, the interaction between the vehicle with electromagnets and the elevated guideway must be understood to ensure safe running. The purpose of this paper is to compare vibration characteristics of the vehicle on the switching system and other sections when the full weight condition of urban maglev vehicle that 26.5 tons per car(empty car weight 19 tons + passenger condition 7.5 tons), is applied. Through such results, Maglev vehicles and switching system can be established and the levitation stability can be improved.

  • PDF

Development Status and Test Results of the 3 way Switch for the Urban Maglev (도시형 자기부상열차 3방향 분기기 개발현황 및 시험결과)

  • Lee, Jong-Min;Han, Hyung-Suk;Kim, Chang-Hyun;Shin, Hyeon-Jae;Suh, Sung-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1742-1749
    • /
    • 2011
  • The 3 way segmented Maglev switch is developed for the urban Maglev vehicle, which is scheduled to debut at the middle of 2013 in Incheon International Airport. The 3 way switch is composed of 3 moving girders, 4 fixed girders, driving units, moving units, clamping units and articulated angle relieving equipment etc. In this paper, the measured results on the interaction between vehicle and switch are discussed. The measured results are following; First, continuous moving test and natural frequency for girder and levitation rail. Second, levitation and lateral air gap of the bogies running on the curved switch. Third, noise of moving mechanical parts of the 3 way segmented switch. Forth, thermal displacement of the girder due to temperature change. With over the measured results, more reliability and stability of the 3 way segmented switch are secured.

  • PDF

Emergency Evacuation Scenario Study of Urban Metro Vehicle Running on Elevated Guideway (도시철도차량의 고가선로 비상대피 시나리오 분석)

  • Kim, Young-Sang;Maeng, Hee-Young;Wang, Jong-Bae
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.3
    • /
    • pp.117-124
    • /
    • 2012
  • There have been recently introduced new types of urban metro vehicles called LRT (Light Rail Transit) running on elevated guideway such as Uijeongbu VAL(which stands for V$\acute{e}$hicule Automatique L$\acute{e}$ger: Automatic Light Rail Vehicle) system, Yong-In LIM(Linear Induction Motor) system, Incheon international airport MAGLEV(Magnetic Levitated Vehicle) system and Daegu monorail system. Most of accidents by the vehicles are bound to happen on elevated guideway. Therefore, it is of vital importance to analyze hazards related to vehicles running on elevated guideway and study emergency evacuation scenarios applicable in case of accidents on elevated guideway so as to secure the safety of the new types of urban metro vehicles. In this study, FTA(Fault Tree Analysis) model was developed to identify all possible hazards, and all possible evacuation scenarios were studied. It was also confirmed that each hazard can be corresponded to one or more evacuation scenarios. This result shows that passengers can be evacuated according to one of the scenarios identified in this study in case of an accident of "Train Stranded on Elevated Guideway".