• Title/Summary/Keyword: Incipient wetness impregnation method

Search Result 13, Processing Time 0.021 seconds

Optimization of Supported Pt Catalysts for Single Stage Water Gas Shift Reaction (일단 WGS반응용 백금 담지 촉매 최적화)

  • Kim, Ki-Sun;Jeong, Dae-Woon;Koo, Kee Young;Yoon, Wang Lai;Roh, Hyun-Seog
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.156.2-156.2
    • /
    • 2011
  • 본 연구에서는 일단 수성가스전이반응 (Single stage water gas shift reaction)을 위해 높은 활성을 가진 백금 담지 촉매를 함침법 (Incipient wetness impregnation method)으로 제조하여 높은 공간 속도 (Gas hourly space velocity) $45,515h^{-1}$에서 담체에 따른 촉매 활성을 평가하였다. 담체는 $CeO_2$, $ZrO_2$, MgO, MgO-$Al_2O_3$ (MgO = 30 wt%) 그리고 $Al_2O_3$를 사용하였으며 백금의 담지량은 1 wt%로 고정하였다. BET, XRD, TPR, CO-chemisorption 분석을 통하여 담체의 구조적 특성이 촉매 활성에 미치는 영향에 대하여 조사하였다.

  • PDF

Low Temperature Catalytic Activity of Cobalt Oxide for the Emergency Escape Mask Cartridge

  • Park, Jae-Man;Kim, Deog-Ki;Shin, Chang-Sub
    • International Journal of Safety
    • /
    • v.1 no.1
    • /
    • pp.58-61
    • /
    • 2002
  • A preparation method of cobalt supported alumina catalyst for a emergency escape mask cartridge has been studied. Catalysts were prepared by incipient wetness impregnation method using pre-shaped $\gamma$=alumina powders of 70-100 mesh. The catalyst was tested in a continuous-flow reactor system and characterized by elemental analysis, BET and TGA-DTA techniques. Cobalt shows higher activity than platinum or nickel for carbon monoxide oxidation at room temperature. Optimum loading amount of cobalt was 10 wt.% for CO oxidation and the reaction activity increases gradually with the increase of calcination temperature up to $450^{\circ}C.

($H_2S$ Adsorption Characteristics of $KIO_3$ Impregnated Activated Carbon (($KIO_3$ 첨착활성탄의 황화수소 흡착 성능평가)

  • Kim, Jun-Suk;Kim, Myung-Chan;Kang, Eun-Jin;Kim, Myung-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.72-79
    • /
    • 2003
  • The impregnated activated carbons were prepared by the incipient wetness method with the contents of $KIO_3$ varied from 1.0${\sim}$10 wt% as the impregnation material. The specific surface area and micropore volume of the rice hulls activated carbon were $2,600{\sim}2,800$ $m^2$/g and 1.1${\sim}$1.4 cc/g, respectively. With increasing the contents of impregnation materials, the surface area and micropore volume decreased by 3${\sim}$21%. However, The amounts of hydrogen sulfide adsorbed increased by 2.1${\sim}$2.8 times depending on the impregnation content. The optimum contents of $KIO_3$ were 2.4 wt%. Although the breakthrough time and adsorption capacity of hydrogen sulfide decreased with increasing temperature in the case of the unimpregnated activated carbons, they increased by 1.2${\sim}$ 3.2 times for the case of the impregnated activated carbons. The optimum aspect ratio(L/D) was 1.0 and the adsorption amount of hydrogen sulfide enhanced with increasing the gas flow rate. The regeneration temperature was determined as 400$^{\circ}C$ from the TGA experiment. The adsorption capacity of hydrogen sulfide with the impregnated activated carbon decreased gradually as the regeneration continued. The hydrogen sulfide adsorption amount of the regenerated activated carbon up to 4 times was still higher than that of the unimpregnated activated carbon.

The Effect of K Promoter on Ni-Co (Bimetallic) Catalyst for Dry Methane Reforming

  • Dharmasaroja, Nichthima;Phongaksorn, Monrudee;Tungkamani, Sabaithip;Ratana, Tanakorn;Sornchammi, Thana
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.2
    • /
    • pp.110-117
    • /
    • 2015
  • 10 wt% (Ni-Co) catalysts with different Ni and Co content : 10%Ni, 9%Ni1%Co, 7%Ni3%Co, 5%Ni5%Co, 3%Ni7%Co, and 10%Co; were prepared using sol-gel method followed by incipient wetness impregnation method. To investigate the catalytic activity including the stability, dry methane reforming were demonstrated over the pelletized catalysts at $620^{\circ}C$ under atmospheric pressure in a $CH_4:CO_2:N_2$ feedstock for 360 min. The results showed that bimetallic catalysts with the Co content equal to or greater than 3% were more stable than monometallic catalysts (10%Ni and 10%Co). The temperature programmed hydrogenation interpreted that the additional of Co into Ni catalyst improved the carbon resistance from methane cracking. Promoted this type of bimetallic catalyst using 1wt% K (trimetallic catalyst) prevented the carbon formation on the catalyst. The temperature programmed desorption of $CO_2$ indicated that this trimetallic catalyst has a greater number of strong basic sites. Moreover, the appearance of K lowered the number of weak basic sites and decreased the conversion of methane by 12 %.

Effect of the Preparation Method on the Activity of CeO2-promoted Co3O4 Catalysts for N2O Decomposition (촉매 제조방법에 따른 Co-CeO2 촉매의 N2O 분해 특성 연구)

  • Kim, Hye Jeong;Kim, Min-Jae;Lee, Seung-Jae;Ryu, In-Soo;Yi, Kwang Bok;Jeon, Sang Goo
    • Clean Technology
    • /
    • v.24 no.3
    • /
    • pp.198-205
    • /
    • 2018
  • This study investigated the influence of catalyst preparation on the activity of $Co-CeO_2$ catalyst for $N_2O$ decomposition. $Co-CeO_2$ catalysts were synthesized by co-precipitation and incipient wetness impregnation. In order to estimate the performance of the as prepared catalysts, direct catalytic $N_2O$ decomposition test was carried out under $250{\sim}375^{\circ}C$. As a result, the catalyst prepared by co-precipitation (CoCe-CP) showed an enhanced performance on $N_2O$ decomposition reaction even in the presence of $O_2$ and/or $H_2O$, whereas the impregnation catalyst (CoCe-IM) did not. In order to investigate the difference in catalytic activity, characterization such as XRD, BET, TEM, $H_2-TPR$, $O_2-TPD$, and XPS was conducted. It is confirmed that the particle size and specific surface area were changed depending on the catalyst preparation method and the synthesis process influenced the physical properties of the catalysts. In addition, the improvement in the activity of the catalyst prepared by co-precipitation is due to the enhanced reduction from $Co^{3+}$ to $Co^{2+}$ and the improved oxygen desorption rate. However, it has been confirmed that the surface electron state and binding energy, which are related to $N_2O$ decomposition, do not change depending on the preparation method.

Effect of Template Existence on the Textural Properties of Iron-based Catalyst for Fischer Tropsch Reaction

  • Sirikulbodee, Papahtsara;Tungkamani, Sabaithip;Phongksorn, Monrudee;Ratana, Tanakorn;Sornchamni, Thana
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.2
    • /
    • pp.96-104
    • /
    • 2015
  • Fischer Tropsch reaction is one of the interesting topic for renewable and clean energy. Polymerization of carbon monoxide or carbon dioxide with hydrogen over metal supported catalyst can produce long chain hydrocarbons. Synthetic liquid hydrocarbons are promising alternative to fossil fuels. This research work has been focused on the synthesis of Fe based catalyst for Fischer Tropsch reaction. Mesoporous silica (MS) support prepared by a precipitation method using two different washing solution, distilled water (DW) and acid in ethanol solution (ET), and different calcination temperature. Then, Fe/MS was prepared by an incipient wetness impregnation method. All of samples were systematically characterized using various physical and chemical techniques. TEM and XRD analysis were used to ensure that the cubic Ia3d mesostructure is stable after calcination. FTIR spectra are useful to ascertain the existence of template in the support. TPR studies were also used to understand the nature of Fe species and their reducibility. The results reveal that washing the support with distilled water and calcination at $550^{\circ}C$ can efficiently remove the triblock copolymer templates. The existence of template in the support affects the textural properties of all catalyst investigated.

Steam Reforming of Ethylene Glycol over Ni/Al2O3 Catalysts: Effect of the Preparation Method and Reduction Temperature (Ni/Al2O3 촉매를 사용한 에틸렌글리콜의 수증기 개질 반응: 촉매 제조 방법과 환원온도의 영향)

  • Choi, Dong Hyuck;Park, Jung Eun;Park, Eun Duck
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.372-381
    • /
    • 2015
  • The effect of preparation method on the catalytic activities of the $Ni/Al_2O_3$ catalysts on steam reforming of ethylene glycol was investigated. The catalysts were prepared with various preparation methods such as an incipient wetness impregnation, wet impregnation, and coprecipitation method. In the case of coprecipitation method, various precipitants such as KOH, $K_2CO_3$, and $NH_4OH$ were compared. The prepared catalysts were characterized by using $N_2$ physisorption, inductively coupled plasma-atomic emission spectroscopy, X-ray diffraction, temperatureprogrammed reduction, pulsed $H_2$ chemisorption, temperature-programmed oxidation, scanning electron microscopy, and thermogravimetric analysis. Among the catalysts reduced at 773 K, the $Ni/Al_2O_3$ catalyst prepared by a coprecipitation with KOH or $K_2CO_3$ as precipitants showed the best catalytic performance. The preparation method affected the particle size of Ni, reducibility of nickel oxides, catalytic performance (activity and stability), and types of coke formed during the reaction. The $Ni/Al_2O_3$ catalyst prepared by a coprecipitation with KOH showed the increasing catalytic activity with an increase in the reduction temperature from 773 to 1173 K because of an increase in the reduction degree of Ni oxide species even though the particle size of Ni increased with increasing reduction temperature.

Preferential CO Oxidation over Ce-Promoted Pt/γ-Al2O3 Catalyst (Ce가 첨가된 Pt/γ-Al2O3 촉매의 선택적 CO 산화반응 특성)

  • Kim, Kihyeok;Koo, Keeyoung;Jung, Unho;Yoon, Wanglai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.6
    • /
    • pp.640-646
    • /
    • 2012
  • The effect of Ce promotion over 1wt% $Pt/{\gamma}-Al_2O_3$ catalysts on the CO conversion and $CO_2$ selectivity was investigated in preferential CO oxidation (PrOx) to reduce the CO concentration less than 10 ppm in excess $H_2$ stream for polymer electrolyte membrane fuel cell (PEMFC). Ce-promoted 1wt% $Pt/{\gamma}-Al_2O_3$ catalysts were prepared by incipient wetness impregnation method and the loading amount of Pt was fixed at 1wt%. The content of Ce promoter which has excellent oxygen storage and transfer capability due to the redox property was adjusted from 0 to 1.5wt%. Ce-promoted 1wt% $Pt/{\gamma}-Al_2O_3$ catalysts exhibit high CO conversion and $CO_2$ selectivity at low temperatures below $150^{\circ}C$ due to the improvement of reducibility of surface PtOx species compared with the 1wt% $Pt/{\gamma}-Al_2O_3$ catalyst without Ce addition. When Ce content was more than 1wt%, the catalytic activity was decreased at over $160^{\circ}C$ in PrOx because of competitive $H_2$ oxidation. As a result, 0.5wt% Ce is optimal content not only to achieve high catalytic activity and good stability at low temperatures below $150^{\circ}C$ in the presence of $CO_2$ and $H_2O$ but also to minimize the $H_2$ oxidation at high temperatures.

Glycerol Steam Reforming for Hydrogen Production on Metal-ceramic Core-shell CoAl2O4@Al Composite Structures (금속-세라믹 Core-Shell CoAl2O4@Al 구조체를 적용한 불균일계 촉매의 글리세롤 수소전환 반응특성)

  • Kim, Jieun;Lee, Doohwan
    • Clean Technology
    • /
    • v.21 no.1
    • /
    • pp.68-75
    • /
    • 2015
  • In this study, we investigated the structure and properties of a highly heat conductive metal-ceramic core-shell CoAl2O4@Al micro-composite for heterogeneous catalysts support. The CoAl2O4@Al was prepared by hydrothermal surface oxidation of Al metal powder, which resulted in the structure with a high heat conductive Al metal core encapsulated by a high surface area CoAl2O4 shell. For comparison, CoAl2O4 was also prepared by co-precipitation method and also utilized for a catalyst support. Rh catalysts supported on CoAl2O4@Al and CoAl2O4 were prepared by incipient wetness impregnation and characterized by N2 adsorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), CO chemisorption, and temperature-programmed reduction (TPR). The properties of catalysts were investigated for glycerol steam reforming reaction for hydrogen production at 550 ℃. Rh/CoAl2O4@Al exhibited about 2.8 times higher glycerol conversion turnover frequency (TOF) than Rh/CoAl2O4 due to facilitated heat transport through the core-shell structure. The CoAl2O4@Al and CoAl2O4 also showed some catalytic activities due to a partial reduction of Co on the support, and a higher catalytic activity was also found on the CoAl2O4@Al core-shell than CoAl2O4. These catalysts, however, displayed deactivation on the reaction stream due to carbon deposition on the catalysts surface.

CO Oxidation Over Pt Supported on Al-Ce Mixed Oxide Catalysts with Different Mole Ratios of Al/(Al+Ce) (서로 다른 몰비의 Al/(Al+Ce)를 가진 Al-Ce 혼합산화물에 담지된 Pt 촉매 상에서의 일산화탄소 산화반응)

  • Park, Jung-Hyun;Cho, Kyung-Ho;Kim, Yun-Jung;Shin, Chae-Ho
    • Clean Technology
    • /
    • v.17 no.2
    • /
    • pp.166-174
    • /
    • 2011
  • The xAl-yCe oxide catalysts with different mol ratios of Al/(Al+Ce) were prepared by a co-precipitation method and Pt supported on xAl-yCe oxide catalysts were synthesized by an incipient wetness impregnation method. The catalysts were characterized by X-ray Diffraction (XRD), $N_2$ sorption, and $H_2$/CO-temperature programmed reduction ($H_2$/CO-TPR) to correlate with catalytic activities in co oxidation. Among the catalysts studied here, Pt/1Al-9Ce oxide catalyst showed the highest activity in dry and wet reaction conditions and the catalytic activity showed a typical volcano-shape curve with respect to Al/(Al+Ce) mol ratio. When the presence of 5% water vapor in the feed, the temperature of $T_{50%}$ was shifted ca. $30^{\circ}C$ to lower temperature region than that in dry condition. From CO-TPR, the desorption peak of $CO_2$ on Pt/1Al-9Ce oxide catalyst showed the highest value and well correlated the catalytic performance. It indicates that the Pt/1Al-9Ce oxide catalyst has a large amount of active sites which can be adsorbed by co and easy to supplies the needed oxygen. In addition, the amount of pentacoordinated $Al^{3+}$ sites obtained through $^{27}Al$ NMR analysis is well correlated the catalytic performance.