• Title/Summary/Keyword: Induced drag

Search Result 166, Processing Time 0.029 seconds

An Experimental Study on the Lift and Drag Characteristics of a Wing with a Helical Ring Wing Tip (나선 고리형 날개끝을 가진 날개의 양항특성에 관한 실험적 연구)

  • Lim, J.H.;Lee, B.J.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.6 no.1
    • /
    • pp.7-20
    • /
    • 1998
  • A reduction of induced drag is an important problem in order to save fuels. In this study, the aerodynamic characteristics of wing tip devices to reduce induced drag, such as end plate, plain ring, helical ring wing tip device, was experimentally investigated in a low speed wind tunnel. The experimental results showed that the wing model with a helical ring wing tip device reduced a induced drag and increased lift-drag ratio.

  • PDF

Aerodynamic Analysis of Various Winglets (윙렛 형상에 따른 공력 특성 해석)

  • Lee, Yung-Gyo;Kim, Cheol-Wan;Shim, Jae-Yeul
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.24-29
    • /
    • 2008
  • Aircraft fuel efficiency is one of main concerns to aircraft manufacturers and to aviation companies because jet fuel price has tripled in last ten years. One of simple and effective methods to increase fuel efficiency is to reduce aircraft induced drag by using of wingtip devices. Induced drag is closely related to the circulation distribution, which produces strong wingtip vortex behind the tip of a finite wing. Wingtip devices including winglets can be successfully applied to reduce induced drag by wingtip vortex mitigation. Winglet design, however, is very complicated process and has to consider many parameters including installation position, height, taper ratio, sweepback, airfoil, toe-out angle and cant angle of winglets. In current research, different shapes of winglets are compared in the view of vortex mitigation. Appropriately designed winglets are proved to mitigate wingtip vortex and to increase lift to drag ratio. Also, the results show that winglets are more efficient than wingtip extension. That is the reason B-747-400 and B-737-800 chose winglets instead of a span increase to increase payload and range. Drag polar comparison chart is presented to show that minimum drag is increased by viscous drag of winglet, but at high lift, total drag is reduced by induced drag decrease. So, winglets are more efficient for aircraft that cruises at a high lift condition, which generates very strong wingtip vortex.

  • PDF

양력선 이론을 이용한 EDISON CFD 해석자의 검증

  • Kim, Tae-Hui
    • Proceeding of EDISON Challenge
    • /
    • 2016.11a
    • /
    • pp.101-105
    • /
    • 2016
  • Prandtl's Lifting-line theory is the classical theory of calculating aerodynamic properties. Though it is classical method, it predicts the aerodynamic properties well. By lifting-line theory, high aspect ratio is critical factor to decrease induced drag. And 'elliptic-similar' wing also makes the minimum induced drag. But due to the problem of manufacturing, tapered wing is preferred and have been utilized. In this Paper, by using Edison CFD, verifying the classical lifting-line theory. To consider induced drag only, using Euler equation as governing equation instead of full Navier-Stokes equation. Refer to the theory, optimum taper ratio which makes the minimum induced drag is 0.3. Utilizing the CFD results, plotting oswald factor over various taper ratio and investigating whether the consequences are valid or not. As a result, solving Euler equation by EDISON CFD cannot guarantee the theoretical values because it is hard to set the proper grid to solve. Results are divided into two cases. One is the values are decreased gradually and another seems to following tendency, but values are all negative number.

  • PDF

A NUMERICAL STUDY ON THE EFFECT OF DOWN-WASH OF A WING-BODY ON ITS AERODYNAMIC CHARACTERISTICS (익형 동체의 하강기류(Down-wash)가 공기역학적 특성에 미치는 영향에 관한 수치해석연구)

  • Yoon, K.H.;Kim, C.H.
    • Journal of computational fluids engineering
    • /
    • v.18 no.3
    • /
    • pp.8-13
    • /
    • 2013
  • Drag reduction of a running vehicle is very important issue for the energy savings and emission reduction of its power train. Especially for a solar powered electric vehicle, the drag reduction and weight lightening are two serious problems to be solved to extend its driving distance under the given energy condition. In this study, the ground effect of an airfoil shaped road vehicle was studied for an optimum body design of an ultra-light solar powered electric vehicle. Clark-Y airfoil type was adopted to the body shape of the model vehicle to reduce aerodynamic drag. From the study, it was found that the drag of the model vehicle was reduced as the height(h) between ground and the lower surface of the model vehicle was decreased. It is due to the reduction of the down-wash decreasing the induced drag of the vehicle. The lift was also decreased as the height decreased. It is due to the turbulent boundary layer developed beneath the vehicle body. The drag is classified into two types; the form and friction drag. The fraction of form drag to friction one is 76 to 24 on the model vehicle. As the height(h) of the model vehicle from the ground surface increases the form drag also increases but the friction drag is in reverse.

Flow Characteristics of Drag Reducing Channel Flows Induced by Surfactant (계면활성제를 첨가한 마찰감소 채널흐름의 유동특성)

  • Park, S.R.;Yoon, H.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.4
    • /
    • pp.519-526
    • /
    • 1996
  • A 2D-LDV system was employed to investigate the flow field characteristics in fully developed drag reducing turbulent channel flows. The additive used in this study was Habon-G which showed splendid drag reduction effect and minimum mechanical degradation trend in the closed flow circulation loop. In order to have better understanding of the drag reduction mechanism, the instantaneous velocities were carefully measured under various experimental conditions and the flow characteristics including time-averaged velocity, turbulent intensity and Reynolds shear stresses were carefully assessed. The time-averaged velocity profiles of surfactant flows showed more parabolic shape(typically shown in a laminar flow) together with significant suppression of turbulent production, yielding the shear induced micelle structure orienting in the flow direction due to its isotropic characteristics. Especially it was observed that the maximum intensity for drag reducing flows was shifted away from the wall and that the streamwise and normal turbulent intensities were strongly altered. This phenomenon strongly suggests that the viscous sublayer becomes thicker with addition of surfactant. Turbulent momentum transport was drastically suppressed across the whole drag reducing channel flow.

  • PDF

Application of Polymer Induced Drag Reduction to OTEC System (고분자로 인한 마찰저항 감소의 OTEC시스템 응용)

  • Kim, C.A.;Sung, J.H.;Choi, H.J.;Chun, W.;Kim, S.;Kim, C.B.;Kim, H.T.
    • Solar Energy
    • /
    • v.18 no.4
    • /
    • pp.1-10
    • /
    • 1998
  • Polymer induced turbulent drag reduction in a rotating disk apparatus was investigated using four different molecular weights of poly(ethylene oxide)(PEO) in a synthetic seawater solution for the purpose of potential application to the cold water piping in the Ocean Thermal Energy Conversion(OTEC) system. To apply drag reduction to the OTEC we measured the temperature dependence on the drag reduction efficiency. From this study, it was found that the drag reduction efficiency increases with the temperature and the concentration. To measure the drag reduction efficiency during the operation period, the drag reduction behavior was detected as a function of time and the results obtained from the experiment was compared to the Brostow's model equation.

  • PDF

Temperature and diameter effect on hydrodynamic characteristic of surfactant drag-reducing flows

  • Indartono Y.S.;Usui H.;Suzuki H.;Komoda Y.
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.4
    • /
    • pp.157-164
    • /
    • 2005
  • Hydrodynamic characteristic of surfactant drag-reducing flows is still not fully understood. This work investigated the temperature and diameter effect on hydrodynamic characteristic of cationic surfactant drag reducing flows in pipes. Solution of oleyl bishydroxyethyl methyl ammonium chloride (Ethoquad O/12), 900 ppm, as a cationic surfactant and sodium salicylate (NaSal), 540 ppm, as a counter-ion was tested at 12, 25, 40, and $50^{\circ}C$ in pipes with diameter of 13, 25, and 40 mm. Drag reduction effectiveness of this surfactant solution was evaluated in 25 mm pipe from 6 to $75^{\circ}C$. Rheological characteristic of this solution was measured by stress control type rheometer with cone-and-plate geometry. Scale-up laws proposed by previous investigators were used to evaluate the flow characteristic of the solution. It was found that this surfactant solution has clear DR capability until $70^{\circ}C$. Result of this work suggested that temperature has a significant influence in changing the hydrodynamic entrance length of surfactant drag reducing flows. From rheological measurement, it was found that the solution exhibits Shear Induced Structure at all temperatures with different degree of peak viscosity and critical shear rate.

FLOW-INDUCED FORCES ON AN INCLINED SQUARE CYLINDER (기울어진 정방형 실린더에 작용하는 유체력)

  • Yoon, Dong-Hyeog;Yang, Kyung-Soo;Choi, Choon-Bum
    • Journal of computational fluids engineering
    • /
    • v.14 no.3
    • /
    • pp.9-15
    • /
    • 2009
  • Numerical investigation has been carried out for laminar flow past an inclined square cylinder in cross freestream. In particular, inclination of a square cylinder with respect to the main flow direction can cause sudden shift of the separation points to other edges, resulting in drastic change of flow-induced forces on the cylinder such as Strouhal number (St) of vortex shedding, drag and lift forces on the cylinder, depending upon the inclination angle. Collecting all the numerical results obtained, we propose contour diagrams of drag/lift coefficients and Strouhal number on an Re-Angle plane. This study would be the first step towards understanding flow-induced forces on cylindrical structures under a strong gust of wind from the viewpoint of wind hazards.

Experimental study on vortex induced vibration of risers with fairing considering wake interference

  • Lou, Min;Wu, Wu-gang;Chen, Peng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.2
    • /
    • pp.127-134
    • /
    • 2017
  • Vortex Induced Vibration (VIV) is a typical flow-structure interference phenomenon which causes an unsteady flow pattern due to vortex shedding at or near the structure's natural frequency leading to resonant vibrations. VIV may cause premature fatigue failure of marine risers and pipelines. A test model was carried out to investigate the role of a stationary fairing by varying the caudal horn angle to suppress riser VIV taking into account the effect of wake interference. The test results show significant reduction of VIV for risers disposed in tandem and side-by-side. In general, fairing with a caudal horn of $45^{\circ}$ and $60^{\circ}$ are efficient in quelling VIV in risers. The results also reveal fairing can reduce the drag load of risers arranged side-by-side. For the tandem configuration, a fairing can reduce the drag load of an upstream riser, but will enlarge the drag force of the downstream riser.

Drag reduction of a disk with an upstream rod

  • Zhang, Panfeng;Gao, Lei;Wang, Jinjun
    • Wind and Structures
    • /
    • v.9 no.3
    • /
    • pp.245-254
    • /
    • 2006
  • The pressure and drag measurements were carried out in the wind tunnel to investigate the drag reduction of the disk by using an interference rod placed upstream. The results indicate that there is a pair of standing vortices in the front stagnation region of the disk induced by the rod. The standing vortices can decrease the pressure on the disk upwind side; hence it can reduce the drag of the disk. With an increasing rod diameter, the standing vortices are strengthened and more drag reduction can be achieved for the disk. With rod diameter d/D = 0.05 (d, D are the diameters of rod and disk, respectively), the total drag of the disk can be reduced by about 9% compared with that of the bare disk.