• Title/Summary/Keyword: Inertial interaction

Search Result 45, Processing Time 0.026 seconds

Soil-structure interaction and axial force effect in structural vibration

  • Gao, H.;Kwok, K.C.S.;Samali, B.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.1
    • /
    • pp.1-19
    • /
    • 1997
  • A numerical procedure for dynamic analysis of structures including lateral-torsional coupling, axial force effect and soil-structure interaction is presented in this study. A simple soil-structure system model has been designed for microcomputer applications capable of reflecting both kinematic and inertial soil-foundation interaction as well as the effect of this interaction on the superstructure response. A parametric study focusing on inertial soil-structure interaction is carried out through a simplified nine-degree of freedom building model with different foundation conditions. The inertial soil-structure interaction and axial force effects on a 20-storey building excited by an Australian earthquake is analysed through its top floor displacement time history and envelope values of structural maximum displacement and shear force.

Stochastic analysis of seismic structural response with soil-structure interaction

  • Sarkani, S.;Lutes, L.D.;Jin, S.;Chan, C.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.1
    • /
    • pp.53-72
    • /
    • 1999
  • The most important features of linear soil-foundation-structure interaction are reviewed, using stochastic modeling and considering kinematic interaction, inertial interaction, and structural distortion as three separate stages of the dynamic response to the free-field motion. The way in which each of the three dynamic stages modifies the spectral density of the motion is studied, with the emphasis being on interpretation of these results, rather than on the development of new analysis techniques. Structural distortion and inertial interaction analysis are shown to be precisely modeled as linear filtering operations. Kinematic interaction, though, is more complicated, even though it has a filter-like effect on the frequency content of the motion.

Gesture based Input Device: An All Inertial Approach

  • Chang Wook;Bang Won-Chul;Choi Eun-Seok;Yang Jing;Cho Sung-Jung;Cho Joon-Kee;Oh Jong-Koo;Kim Dong-Yoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.230-245
    • /
    • 2005
  • In this paper, we develop a gesture-based input device equipped with accelerometers and gyroscopes. The sensors measure the inertial measurements, i.e., accelerations and angular velocities produced by the movement of the system when a user is inputting gestures on a plane surface or in a 3D space. The gyroscope measurements are integrated to give orientation of the device and consequently used to compensate the accelerations. The compensated accelerations are doubly integrated to yield the position of the device. With this approach, a user's gesture input trajectories can be recovered without any external sensors. Three versions of motion tracking algorithms are provided to cope with wide spectrum of applications. Then, a Bayesian network based recognition system processes the recovered trajectories to identify the gesture class. Experimental results convincingly show the feasibility and effectiveness of the proposed gesture input device. In order to show practical use of the proposed input method, we implemented a prototype system, which is a gesture-based remote controller (Magic Wand).

Evaluation of Inertial Interaction of a Multi-degree-of-freedom Structure during a Large-scale 1-g Shaking Table Test (대형 진동대 실험을 이용한 다자유도 구조물의 관성 상호작용 평가)

  • Chae, Jonghoon;Yoon, Hyungchul;Jung, Jongwon
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.6
    • /
    • pp.17-28
    • /
    • 2022
  • The effect of the soil-structure interaction (SSI) on has been recently evaluated in shaking table tests. However, most of these tests were conducted on single-degree-of-freedom (SDOF) superstructures and a single-pile. This study investigates the inertial interaction effect of a multi-degree-of-freedom (MDOF) superstructure system with a group piles on a large-scale shaking table test. Whereas the SDOF superstructure system shows a single-frequency amplification tendency, the MDOF superstructure system exhibited amplification tendencies of the acceleration phase and frequency responses for multiple frequencies. In addition, the amplification phenomenon between the footing and the column-type superstructure exceeded that between the footing and the wall-type superstructure, indicating a greater inertial interaction effect of the column-type superstructure. The relationship between shear force and inertial force, the relative vertical and horizontal displacements on the footing was figured out. Also, the ananlysis of dynamic p-y curve at each depth was conducted. In summary, the MDOF and SDOP superstructure systems exhibited different behaviors and the column-type superstructure exerted a higher interaction effect than the wall-type superstructure.

Input Ground Motion for the Seismic Analysis of Embedded Structures (반지하구조물 내진설계를 위한 지반거동)

  • 김용석
    • Computational Structural Engineering
    • /
    • v.1 no.2
    • /
    • pp.91-100
    • /
    • 1988
  • 최근 구조물과 지반간의 상호작용이 원자력 발전시설, 해상구조물, 기계기초 등에 대한 내진설계시 매우 중요하다는 것이 일반화되고 있다. 그러나 지금까지 구조물 내진설계시 이러한 구조물이나 지반의 특성이 무시됐었다. 내진설계상 구조물 밑에 있는 지반에 의한 세가지 주된 영향은 Soil Amplification, Kinematic Interaction과 Inertial Interaction이다. 이 논문에서는 반지하구조물 내진설계시 필요한 지반거동을 Soil Amplification과 Kinematic Interaction을 고려하여 구하였으며, 1971년 San Fernando 지진기록으로부터 그 특성을 실제적으로 입증하였다.

  • PDF

Seismic Response of Structure on Flexible Foundation (유연한 기초 위에 세워진 구조물의 지진거동)

  • 김용석
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.11-17
    • /
    • 1997
  • Seismic analyses of structures were carried out in the past assuming a right base and Ignoring the characteristics of foundations and the properties of the underlying soil. Resent soil-structure interaction studies show that seismic response of structure can be affected significantly by these fators. Typical effects of the soil-structure interaction are the kinematic interaction of a rigid massiess foundation and the inertial interaction between underlying soil and structure. The kinematic interaction effect is particularly important for embedded foundations and can be ignored for surface foundations with vertically propagating waves. In this study, seismic response of structure was investigated with four buildings in Mexico City considering only the inertial interaction effect and using the E-W components of the 1985 Mexico City earthquake records. The study was carried out for surface foundations and pile foundations with linear and nonlinear soil conditions, comparing the results with those of the rigid base.

  • PDF

Sensitivity analysis of mass ratio effect on settlement and seismic response of shallow foundation using numerical simulation

  • Kil-Wan Ko;Jeong-Gon Ha;Jinsun Lee;Gye-Chun Cho
    • Geomechanics and Engineering
    • /
    • v.34 no.6
    • /
    • pp.649-664
    • /
    • 2023
  • Structural inertial interaction is a representative the effect of dynamic soil-foundation-structure interaction (SFSI), which leads to a relative displacement between soil and foundation, period lengthening, and damping increasing phenomena. However, for a system with a significantly heavy foundation, the dynamic inertia of the foundation influences and interacts with the structural seismic response. The structure-to-foundation mass ratio (MR) quantifies the distribution of mass between the structure and foundation for a structure on a shallow foundation. Although both systems exhibit the same vertical factor of safety (FSv), the MR and corresponding seismic responses attributed to the structure and foundation masses may differ. This study explored the influence of MR on the permanent deformation and seismic response of soil-foundation-structure system considering SFSI via numerical simulations. Given that numerous dimensionless parameters of SFSI described its influence on the structural seismic response, the parameters, except for MR and FSv, were fixed for the sensitivity analysis. The results demonstrated that the foundation inertia of heavier foundations induced more settlement due to sliding behavior of heavily-loaded systems. Moreover, the structural inertia of heavier structures evidently exhibited foundation rocking behavior, which results in a more elongated natural period of the structure for lightly-loaded systems.

System Identification Analysis on Soil-Structure Interaction Using Field Data (현장자료를 사용한 지반-구조물 상호작용에 대한 경험적 연구)

  • Kim Seung Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.37-46
    • /
    • 2005
  • In the field of earthquake engineering, recent improvements in many areas, such as seismological source modeling, analysis of travel path effects, and characterization of local site effects on strong shaking, have led to significant advances in both code-based and more advanced procedures for evaluating earthquake ground motions. A missing link, however, is empirically verified design procedures fur assessing the effects of soil-structure interaction (SSI). Available Soil-Structure Interaction (SSI) analysis techniques range from simple substructure-type procedures to relatively sophisticated finite element procedures. The most common substructure approach for foundation-soil interaction is to use a frequency-dependent and complex-valued impedance function. This study uniquely evaluates impedance functions for two well-instrumented sites w significant inertial SSI effects using a system Identification technique. The system identification analysis results are then compared to predictions from a simple theoretical model to gain insight into the inertial interaction effect in the subject sites.

Simulation of Pattern Formation and Solitions in Three-Wave Interactions (세 파동의 상호작용에 의한 패턴 형성 및 솔리톤의 전산모사)

  • Lee Hae Jun;Kim Jin Cheol;Kim Gwang Hun;Kim Jong Uk;Kim Chang Beom;Seok Hui Yong
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.42-43
    • /
    • 2003
  • The nonlinear three-wave interaction is an interesting topic having various applications in nonlinear optics, hydrodynamics, acoustic waves, and plasma physics. The resonant interaction between two laser pulses and a plasma wave plays important roles in plasma heating, laser reflection in the inertial confinement fusion (ICF), plasma wakefield generation, and ultra-intense laser pulse amplification and pulse compression using stimulated Raman backscattering (RBS). (omitted)

  • PDF

Dynamic interaction analysis of submerged floating tunnel and vehicle (튜브형 수중교량의 교량-차량 동적상호작용 해석방법)

  • Kim, Moon-Young;Kwark, Jong-Won;Min, Dong-Ju
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.83-88
    • /
    • 2013
  • The purpose of this study is to develop the algorithm for dynamic interaction analysis of submerged floating tunnel and vehicles. The dynamic behavior characteristic of submerged floating tunnel is certainly different with general structures, because the submerged floating tunnel is floating in the middle of water, and subjected to constant buoyance. Therefore the analyses in various aspects should be carried out to secure structural stability and practicality of structures. To conduct the dynamic interaction analysis, the structure is modeled by commercial FEM program ABAQUS to investigate modal characteristic. Also the added mass concept is applied to represent the inertial force by a fluid, and then dynamic interaction analyses are conducted with superposition method when the KTX is moving along the submerged floating tunnel. And the time histories are presented for vertical and lateral displacement at the center of the tunnel.

  • PDF