• Title/Summary/Keyword: Inexpensive heater

Search Result 4, Processing Time 0.028 seconds

Design of an Inexpensive Heater using Chip Resistors for a Portable Real-time Microchip PCR System (저항소자를 이용한 휴대형 Real-time PCR 기기용 히터 제작)

  • Choi, Hyoung-jun;Kim, Jeong-tae;Koo, Chi-wan
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.295-301
    • /
    • 2019
  • A heater in a portable real-time polymerase chain reaction(PCR) system is one of the important factors for controlling the PCR thermocycle precisely. Since heaters are integrated on a small-sized PCR chip for rapid heating and fabricated by semiconductor processes, the cost of producing PCR chips is high. Here, we propose to use chip resistors as an inexpensive and accurate temperature control method. The temperature distribution was simulated using one or two chip resistors on a real-time PCR chip and the PCR chip with uniform temperature distribution was fabricated. The temperature rise and fall rates were $18^{\circ}C/s$ and $3^{\circ}C/s$, respectively.

An Approximate Analysis Method to Predict Power Output Characteristics of Stilting Engine (스터얼링 기관의 근사 출력 계산법)

  • 김태한;장익주;이시민
    • Journal of Biosystems Engineering
    • /
    • v.20 no.3
    • /
    • pp.205-216
    • /
    • 1995
  • A fast and inexpensive approximate analysis method to predict power output characteristics of the Stilting engines in a preliminary design stage was investigated. In basic equations proposed by Walker, typical temperatures of working fluids in expansion and compression spaces were treated as those of working fluids in heater and cooler respectively. While the temperature of working fluid in the expansion space was actually lower than that of working fluid in the heater, the temperature of working fluid in the compression space was higher than that of working fluids in the cooler. In this paper, the working fluid temperature of expansion space was treated as lower than the heater temperature and that of compression space was treated as higher than the cooler temperature. Also, according to them, the power output characteristics of the Stirling engine were evaluated with respect to the GPU-3 and 4-215 Stilting engines. The following conclusions were drawn from the analysis. 1. Using the available experimental data from the GPU-3 Stirling engine, it was shown that the approximate analysis predicts the brake power with a maximum error of 19 percent at 1, 000rpm and with a minimum error of 3 percent at 2, 000rpm. 2. The approximate analysis data which for the GPU-3 Stirling engine were much closer to the experimental data than those of adiabatic 2nd order and 3rd order analysis within 1, 500rpm to 2, 500rpm. 3. The approximate analysis data which for the GPU-3 and 4-215 Stilting engines were much closer to the experimental data than those of the Beal number analysis.

  • PDF

Computer Simulation of an Automotive Engine Cooling System (자동차 엔진 냉각시스템의 컴퓨터 시뮬레이션)

  • 원성필;윤종갑
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.58-67
    • /
    • 2003
  • An automotive engine cooling system is closely related with overall engine performances, such as reduction of fuel consumption, decrease of air pollution, and increase of engine life. Because of complex reaction between each component, the direct experiment, using a vehicle, takes high cost, long time, and slow response to the system change. Therefore, a computer simulation would provide the designer with an inexpensive and effective tool for design, development, and optimization of the engine cooling system over a wide range of operating conditions. In this work, it has been predicted the thermal performance of the engine cooling system in cases of stationary mode, constant speed mode, and city-drive mode by mathematical modelling of each component and numerical analysis. The components are engine, radiator, heater, thermostat, water pump, and cooling fans. Since the engine model is the most important, that is divided into eight sub-sections. The volume mean temperature of eight sub-sections are simultaneously calculated at a time. For detail calculation, the radiator and heater are also divided into many sub-sections like control volumes in finite difference method. Each sub-section is assumed to consist of three parts, coolant, tube with fin, and air. Hence it has been developed the simulation program that can be used in case of design and system configuration changes. The overall performance results obtained by the program were desirable and the time-traced tendencies of the results agreed fairly well with those of actual situations.

Optimal Design of a Convective MEMS Accelerometer (열대류형 초소형 가속도계의 최적 설계)

  • Park, Byoung-Kyoo;Kim, Joon-Won;Moon, Il-Kwon;Kim, Dong-Sik
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1951-1956
    • /
    • 2008
  • Various MEMS accelerometers are used in engineering applications including automobiles, mobile phones, military systems, and electronic devices. Among them, the thermal accelerometer employing the temperature difference induced by the convective flow inside the micro cavity has been a topic of interest. As the convective sensor does not utilize a solid proof mass, it is compact, lightweight, inexpensive to manufacture, sensitive and highly endurable to mechanical shock. However, the complexity of the convective flow and various design constraints make optimization of a device a crucial step before fabrication. In this work, optimization of a 2-axis thermal convective MEMS accelerometer is conducted based on 3-dimensional numerical simulation. Parametric studies are performed by varying the several design variables such as the heater shape/size, the cavity size and types of the gas medium and the position of temperature probes in the sensor. The results of optimal design are presented.

  • PDF