• Title/Summary/Keyword: Inhomogeneous

Search Result 674, Processing Time 0.029 seconds

High Temperature Fatigue Deformation Behavior of Automotive Heat Resistant Aluminum Alloys (자동차 부품용 내열 알루미늄 합금의 고온 피로 변형 거동)

  • Park, Jong-Soo;Sung, Si-Young;Han, Bum-Suck;Jung, Chang-Yeol;Lee, Kee-Ahn
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.1
    • /
    • pp.28-38
    • /
    • 2010
  • High temperature high cycle and low cycle fatigue deformation behavior of automotive heat resistant aluminum alloys (A356 and A319 based) were investigated in this study. The microstructures of both alloys were composed of primary Al-Si dendrite and eutectic Si phase. However, the size and distribution for eutectic Si phase varied: a coarse and inhomogeneous distributed was observed in alloy B (A319 based). A brittle intermethallic phase of ${\alpha}-Fe\;Al_{12}(Fe,Mn)_3Si_2$ was detected only in B alloy. Alloy B exhibited high fatigue life only under a high stress amplitued condition in the high cycle fatigue results, whereas alloy A showed high fatigue life when stress was lowered. With regard to the low-cycle fatigue result ($250^{\circ}C$) showing higher fatigue life as ductility increased, alloy A demonstrated higher fatigue life under all of the strain amplitude conditions. Fractographic observations showed that large porosities and pores near the outside surface could be the main factor in the formation of fatigue cracks. In alloy B. micro-cracks were formed in both the brittle intermetallic and coarse Si phasese. These micro-cracks then coalesced together and provided a path for fatigue crack propagation. From the observation of the differences in microstructure and fractography of these two automotive alloys, the authors attempt to explain the high-temperature fatigue deformation behavior of heat resistant aluminum alloys.

A Brief Review on Polarization Switching Kinetics in Fluorite-structured Ferroelectrics (플루오라이트 구조 강유전체 박막의 분극 반전 동역학 리뷰)

  • Kim, Se Hyun;Park, Keun Hyeong;Lee, Eun Been;Yu, Geun Taek;Lee, Dong Hyun;Yang, Kun;Park, Ju Yong;Park, Min Hyuk
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.6
    • /
    • pp.330-342
    • /
    • 2020
  • Since the original report on ferroelectricity in Si-doped HfO2 in 2011, fluorite-structured ferroelectrics have attracted increasing interest due to their scalability, established deposition techniques including atomic layer deposition, and compatibility with the complementary-metal-oxide-semiconductor technology. Especially, the emerging fluorite-structured ferroelectrics are considered promising for the next-generation semiconductor devices such as storage class memories, memory-logic hybrid devices, and neuromorphic computing devices. For achieving the practical semiconductor devices, understanding polarization switching kinetics in fluorite-structured ferroelectrics is an urgent task. To understand the polarization switching kinetics and domain dynamics in this emerging ferroelectric materials, various classical models such as Kolmogorov-Avrami-Ishibashi model, nucleation limited switching model, inhomogeneous field mechanism model, and Du-Chen model have been applied to the fluorite-structured ferroelectrics. However, the polarization switching kinetics of fluorite-structured ferroelectrics are reported to be strongly affected by various nonideal factors such as nanoscale polymorphism, strong effect of defects such as oxygen vacancies and residual impurities, and polycrystallinity with a weak texture. Moreover, some important parameters for polarization switching kinetics and domain dynamics including activation field, domain wall velocity, and switching time distribution have been reported quantitatively different from conventional ferroelectrics such as perovskite-structured ferroelectrics. In this focused review, therefore, the polarization switching kinetics of fluorite-structured ferroelectrics are comprehensively reviewed based on the available literature.

Natural Frequency Characteristics of Vertically Loaded Barrettes (수직하중을 받는 Barrette 말뚝의 고유진동수 특성)

  • Lee, Joon Kyu;Ko, Jun Young;Choi, Yong Hyuk;Park, Ku Byoung;Kim, Jae Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.1
    • /
    • pp.39-48
    • /
    • 2021
  • In this paper, an analytical model is proposed for assessing the natural frequency of barrettes subjected to vertical loading. The differential equation governing the free vibration of rectangular friction piles embedded in inhomogeneous soil is derived. The governing equation is numerically integrated by Runge-Kutta technique and the eigenvalue of natural frequency is computed by Regula-Falsi method. The numerical solutions for the natural frequency of barrettes compare well with those obtained from finite element analysis. Illustrated examples show that the natural frequencies increase with an increase of the cross-sectional aspect ratio, the friction resistance ratio and the soil stiffness ratio, and decrease with an increase of the friction aspect ratio, the slenderness ratio and the load factor, respectively.

Investigating the Effect of Homogenization Heat Treatment on the Microstructure and Texture of Magnesium Alloy Sheet Manufactured via Twin Roll Casting (트윈롤 주조법으로 제조된 마그네슘합금 판재의 균질화 열처리에 따른 미세조직 및 집합조직 발달)

  • Lee, Hee Jae;Park, No Jin
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.3
    • /
    • pp.122-129
    • /
    • 2021
  • This study focuses on the microstructural development of 99% magnesium alloy sheet manufactured using twin roll casting (TRC) process. Herein, a plate with a thickness of 5 mm was manufactured using the TRC process, homogenization heat treatment was performed at 400℃ for 2-32 h, and finally, the change in microstructure was evaluated via optical microscopy and textural analysis. The results suggest that the plate manufactured using the TRC process was not destroyed and was successfully rolled into a plate. Microscopic observation suggested that the dendritic cast structure was arranged along the rolling direction. And the central layer of the rolled plate, where was present in a liquid state at the beginning of rolling, solidified later during the TRC process to form central segregation. The initial cast structure and inhomogeneous structure of the plate were recrystallized by homogenization heat treatment for only 2 h, and it was confirmed that the segregated part of the central layer became homogeneous and recrystallization occurred. Grain growth occurred as the heat treatment time increased, and secondary recrystallization occurred, wherein only some grains were grown. The textural analysis, which was conducted via X-ray diffraction, confirmed that the relatively weak basal plane texture developed using the TRC process was formed into a random texture after heat treatment.

Li3PO4 Coated Li[Ni0.75Co0.1Mn0.15]O2 Cathode for All-Solid-State Batteries Based on Sulfide Electrolyte

  • Lee, Joo Young;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.407-415
    • /
    • 2022
  • Surface coating of cathodes is an essential process for all-solid-state batteries (ASSBs) based on sulfide electrolytes as it efficiently suppresses interfacial reactions between oxide cathodes and sulfide electrolytes. Based on computational calculations, Li3PO4 has been suggested as a promising coating material because of its higher stability with sulfides and its optimal ionic conductivity. However, it has hardly been applied to the coating of ASSBs due to the absence of a suitable coating process, including the selection of source material that is compatible with ASSBs. In this study, polyphosphoric acid (PPA) and (NH4)2HPO4 were used as source materials for preparing a Li3PO4 coating for ASSBs, and the properties of the coating layer and coated cathodes were compared. The Li3PO4 layer fabricated using the (NH4)2HPO4 source was rough and inhomogeneous, which is not suitable for the protection of the cathodes. Moreover, the water-based coating solution with the (NH4)2HPO4 source can deteriorate the electrochemical performance of high-Ni cathodes that are vulnerable to water. In contrast, when an alcohol-based solvent was used, the PPA source enabled the formation of a thin and homogeneous coating layer on the cathode surface. As a consequence, the ASSBs containing the Li3PO4-coated cathode prepared by the PPA source exhibited significantly enhanced discharge and rate capabilities compared to ASSBs containing a pristine cathode or Li3PO4-coated cathode prepared by the (NH4)2HPO4 source.

On the wave dispersion and vibration characteristics of FG plates resting on elastic Kerr foundations via HSDT

  • Bennai, Riadh;Fourn, Hocine;Nebab, Mokhtar;Atmane, Redhwane Ait;Mellal, Fatma;Atmane, Hassen Ait;Benadouda, Mourad;Touns, Abdelouahed
    • Advances in concrete construction
    • /
    • v.14 no.3
    • /
    • pp.169-183
    • /
    • 2022
  • In this article, vibrational behavior and wave propagation characteristics in (FG) functionally graded plates resting on Kerr foundation with three parameters is studied using a 2D dimensional (HSDT) higher shear deformation theory. The new 2D higher shear deformation theory has only four variables in field's displacement, which means has few numbers of unknowns compared with others theories. The shape function used in this theory satisfies the nullity conditions of the shear stresses on the two surfaces of the FG plate without using shear correction factors. The FG plates are considered to rest on the Kerr layer, which is interconnected with a Pasternak-Kerr shear layer. The FG plate is materially inhomogeneous. The material properties are supposed to vary smoothly according to the thickness of the plate by a Voigt's power mixing law of the volume fraction. The equations of motion due to the dynamics of the plate resting on a three-parameter foundation are derived using the principle of minimization of energies; which are then solved analytically by the Navier technique to find the vibratory characteristics of a simply supported plate, and the wave propagation results are derived by using the dispersion relations. Perceivable numerical results are fulfilled to evaluate the vibratory and the wave propagation characteristics in functionally graded plates and some parameters such wave number, thickness ratio, power index and foundation parameters are discussed in detail.

Theoretical buckling analysis of inhomogeneous plates under various thermal gradients and boundary conditions

  • Laid Lekouara;Belgacem Mamen;Abdelhakim Bouhadra;Abderahmane Menasria;Kouider Halim Benrahou;Abdelouahed Tounsi;Mohammed A. Al-Osta
    • Structural Engineering and Mechanics
    • /
    • v.86 no.4
    • /
    • pp.443-459
    • /
    • 2023
  • This study investigates the theoretical thermal buckling analyses of thick porous rectangular functionally graded (FG) plates with different geometrical boundary conditions resting on a Winkler-Pasternak elastic foundation using a new higher-order shear deformation theory (HSDT). This new theory has only four unknowns and involves indeterminate integral variables in which no shear correction factor is required. The variation of material properties across the plate's thickness is considered continuous and varied following a simple power law as a function of volume fractions of the constituents. The effect of porosity with two different types of distribution is also included. The current formulation considers the Von Karman nonlinearity, and the stability equations are developed using the virtual works principle. The thermal gradients are involved and assumed to change across the FG plate's thickness according to nonlinear, linear, and uniform distributions. The accuracy of the newly proposed theory has been validated by comparing the present results with the results obtained from the previously published theories. The effects of porosity, boundary conditions, foundation parameters, power index, plate aspect ratio, and side-to-thickness ratio on the critical buckling temperature are studied and discussed in detail.

Fracture Study due to Various Core at Compact Tension Specimen Made of Carbon Fiber Reinforced Plastic (탄소성유강화플라스틱으로 만들어진 소형 인장 시험편에서 여러 종류의 심재에 따른 파손 연구)

  • Kim, Jae-Won;Cho, Jae-Ung
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.3
    • /
    • pp.589-596
    • /
    • 2018
  • Transportation or structure has the important role at clothing, food, and housing at modern society. If even the small crack happens and propagates at transportation or structure, the parts are fractured and they can cause a disaster. CT specimen was used in order to investigate the damage trend due to the crack propagation at this study to prevent this situation. As the material of CT specimen, the unidirectional carbon fiber reinforced plastic of the composite material in the limelight nowadays. The laminate angle designated in order of [60/-60/60/-60] was applied to the specimen model with the unidirectional fiber. As the analysis condition, the forced displacement was applied to the hole of upper part after fixing the hole of lower part. At the result of this study, the equivalent stress and shear stress was shown to be higher in order of the structural steel, copper, titanium and aluminum. This study result is thought to be utilized usefully at verifying the damage of CT specimen made of inhomogeneous material.

Effects of Molding Conditions on the Deflection of Rib Moldings of Fiber-reinforced Plastic Composites in Compression Molding (섬유강화 플라스틱 복합재료의 압축성형에서 리브 성형품의 휨에 미치는 성형조건의 영향)

  • Kim, Jin-Woo;Lee, Jung-Hoon;Lee, Dong-Gi
    • Journal of Advanced Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.285-290
    • /
    • 2017
  • Molding of body with ribs is the most difficult during flow molding process. The rib area is easy to be deformed at the rear side due to wall thickness variation. In this study, relationships between molding condition and deflection of rib-shaped part is investigated during the compression molding of fiber reinforced plastic composites, and the following results are derived. Polypropylene(PP), Polystyrene(PS), and stampable sheet(SS 40wt%) show the increment of deflection along with releasing temperature. For the correlation between incremental holding pressure load and deflection, stampable sheet exhibits lower deflection along with higher holding pressure, while PS shows significant increase of deflection with higher holding pressure, PP shows completely different characteristic, significant reduction of deflection along with higher holding pressure. Regarding to mold temperature and deflection, deflection amount of SS is the biggest, and PS shows the smallest. In addition, all three kinds shows the highest amount of deflection at 173C. Deflection is reduced when mold closing speed is increased. Amount of deflection in SS is larger and is not highly dependent on molding conditions like holding pressure and cooling parameters, compared with single component material like PP. This can be elucidated by anisotropic and inhomogeneous characteristics of glass fiber during filling process of stampable sheet composite.

Microstructure and Mechanical Properties of AA1050/AA6061/AA1050 Layered Sheet Aging-Treated after Cold Roll-Bonding (냉간접합압연 후 시효처리된 AA1050/AA6061/AA1050 층상판재의 미세조직 및 기계적 성질)

  • Sang-Hyeon Jo;Seong-Hee Lee
    • Korean Journal of Materials Research
    • /
    • v.33 no.12
    • /
    • pp.565-571
    • /
    • 2023
  • AA1050/AA6061/AA1050 layered sheet was fabricated by cold roll-bonding process and subsequently T4 and T6 aging-treated. Two commercial AA1050 sheets of 1 mm thickness and one AA6061 sheet of 2 mm thickness were stacked up so that an AA6061 sheet was located between two AA1050 sheets. After surface treatments such as degreasing and wire brushing, they were then roll-bonded to a thickness of 2 mm by cold rolling. The roll-bonded Al sheets were then processed by natural aging (T4) and artificial aging (T6) treatments. The as roll-bonded Al sheets showed a typical deformation structure, where the grains are elongated in the rolling direction. However, after the T4 and T6 aging treatments, the Al sheets had a recrystallized structure consisting of coarse grains in both the AA5052 and AA6061 regions with different grain sizes in each. In addition, the sheets showed an inhomogeneous hardness distribution in the thickness direction, with higher hardness in AA6061 than in AA1050 after the T4 and T6 age treatments. The tensile strength of the T6-treated specimen was higher than that of the T4-treated one. However, the strength-ductility balance was much better in the T4-treated specimen than the T6-treated one. The tensile properties of the Al sheets fabricated in the present study were compared with those in a previous study.