• Title/Summary/Keyword: Inhomogeneous

Search Result 674, Processing Time 0.03 seconds

Magnetic Resonance Imaging of Lumen Wall using Quadrature-typed Inside-out Receiver Coil (회전자계 역수신 코일을 이용한 관벽의 자기공명 영상)

  • 문치웅;조종운
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.5
    • /
    • pp.385-392
    • /
    • 2001
  • This study Proposes a quadrature-typed inside-out receiver coil to obtain magnetic resonance(MR) images of lumen wall. This means that the coil should receive the signals from out-side of receiver coil. This coil has wide and uniform sensitive region to compare with previous coils such as anti-solenoid coil, octal-pole coil and so on. These coils have the disadvantages that sensitive region is narrow and inhomogenous. The proposed coil is consist of two saddle coils of which directions are orthogonal to one another. The sensitivity maps of octal-Pole coil single-saddle coil and quadrature-typed inside-out coil were obtained by computer simulation. And phantom images for each coil were obtained to evaluate the performances of the coil using both 1.5T superconducting and 0.3 Permanent magnet MRI system. The uniformity of quadrature coil's sensitivity map was superior to that of octal-polel coil. Experimentally measured SNR of quadrature coil is also 36% higher than that of single-saddle coil This study shows the possibility of quadrature-typed inside-out receiver coil for the MR lumen wall images.

  • PDF

High temperature properties of surface-modified Hastelloy X alloy (표면처리에 따른 Hastelloy X 합금의 고온물성)

  • Cho, Hyun;Lee, Byeong-Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.4
    • /
    • pp.183-189
    • /
    • 2012
  • Surface treatments and their effects on high temperature properties for the Hastelloy X, which is a promising candidate alloy for high temperature heat-transport system, have been evaluated. For TiAlN and $Al_2O_3$ overlay coatings, the two different PVD (physical vapor deposition) methods using an arc discharge and a sputtering, were applied, respectively. In addition, a different surface treatment method of the diffusion coating by a pack cementation of Al (aluminiding) was also adopted in this study. To achieve enhanced thermal oxidation resistance at $1000^{\circ}C$ by suppressing the inhomogeneous formation of thick $Cr_2O_3$ crust at the surface region, a study for the surface modification methods on the morphological and structural properties of Hastelloy X substrates has been conducted. The structural and compositional properties of each sample were characterized before and after heat-treatment at $1000^{\circ}C$ under air and He environment. The results showed that the Al diffusion coating showed the more enhanced high temperature properties than the overlay coatings such as the suppressed thick $Cr_2O_3$ crust formation and lower wear loss.

Three dimensional Dose reconstruction based on transit dose measurement and Monte Carlo calculation (조사문 선량 분포와 Monte Carlo 계산을 이용한 삼차원 선량 재구성에 관한 연구)

  • Park, Dal;Yeo, In-Hwan;Kim, Dae-Yong;An, Yong-Chan;Heo, Seung-Jae
    • Progress in Medical Physics
    • /
    • v.11 no.2
    • /
    • pp.91-99
    • /
    • 2000
  • This is a preliminary study for developing the method of the dose reconstruction in the patients, irradiated by mega-voltage photon beams from the linear accelerator, using the transit dose distributions. In this study we present the method of three-dimensional dose reconstruction and evaluate the method by computer simulation. To acquire the dose distributions in the patients (or phantoms) we first calculate the differences between the doses at the arbitrary points in the patients and the doses at the corresponding points where the transit doses are measured. Then, we can get the dose in the patients from the measured transit dose and the calculated value of the difference. The dose differences are calculated by applying the inverse square law and using the linear attenuation coefficient. The scatter to primary dose ratios, which are calculated by the Monte Carlo program using the CT data of the patient (or phantoms), are also used in the calculations. For the evaluation of this method we used various kinds of homogeneous and inhomogeneous phantoms and calculated the transit dose distributions with the Monte Carlo program. From the distributions we reconstructed the dose distributions in the phantom. We used mono-energy Photon beam of 1.5MeV and Monte Carlo program EGS4. The comparison between the dose distributions reconstructed using the method and the distributions calculated by the Monte Carlo program was done. They agreed within errors of -4%∼+2%. This method can be used to predict the dose distributions in the patient

  • PDF

A Monte Carlo Simulation for the Newly Developed Head-and-Neck IMRT Phantom: a Pilot Study (제작된 선량 검증용 IMRT 팬텀의 몬테칼로 시뮬레이션: 예비적 연구)

  • Kang, Sei-Kwon;Cheong, Kwang-Ho;Ju, Ra-Hyeong;Cho, Byung-Chul;Oh, Do-Hoon;Kim, Su-SSan;Kim, Kyoung-Ju;Bae, Hoon-Sik;Han, Young-Yih;Shin, Eun-Hyuk;Park, Sung-Ho;Lim, Chun-Il
    • Progress in Medical Physics
    • /
    • v.18 no.3
    • /
    • pp.126-133
    • /
    • 2007
  • A head-and-neck phantom was designed in order to evaluate remotely the quality of the delivery dose of intensity modulated radiation therapy (IMRT) in each institution. The phantom is homogeneous or inhomogeneous by interchanging the phantom material with the substructure like an air or bone plug. Monte Carlo simulations were executed for one beam and three beams to the phantom and compared with ion chamber and thermoluminescent dosimeter (TLD) measurements of which readings were from two independent institutions. For single beam, the ion chamber results and the MC simulations agreed to within about 2% TLDs agreed with the MC results to within 2% or 7% according to which institution read the TLDs. For three beams, the ion chamber results showed -5% maximum discrepancy and those of TLDs were $+2{\sim}+3%$. The accuracy of the TLD leadings should be increased for the remote dose monitoring. MC simulations are a valuable tool to acquire the reliability of the measurements in developing a new phantom.

  • PDF

Alteration Textures and Mineral Chemistry of Margarite from Miwon Area, Chungcheongbukdo (충북미원지역에서 산출하는 마카라이트의 변질양상 및 광물화학)

  • 이승준;안중호;김현철;조문섭
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.69-77
    • /
    • 2002
  • Margarite, which occurs in the Unkyori Formation of Miwon area, Chungcheongbukdo, South Korea, was investigated using the petrographic microscope, back-scattered electron images (BSEI), and electron probe microanalyzer (EPMA) to characterize the alteration textures and mineral chemistries. Most margarite crystals are inhomogeneous, and chlorite was commonly observed to occur at the boundaries parallel to the rim of margarite. Cracks occur across the basal plane of the margarite, and margarite is partly replaced by chlorite along the cracks. In additon, muscovite and biotite are intergrown in margarite and chlorite crystals, suggesting that margarite was partially altered to chlorite as well as to muscovite and biotite. Chemical analysis data show that paragonite solid solution in the margarite is approximately 19.6 mol%, but clintonite solid solution is negligible. Margarite crystals in the Unkyori Formation cut or penetrate other metamorphic minerals In the same thin sections and are oriented randomly without any relationship with the foliation of host rocks, indicating that formed as a secondary mineral after peak metamorphism. Furthermore, it seems that hydrothermal fluids associated with the Mesozoic intrusions developed near the sample are closely related to the margarite formation.

Gas Explosion Hazard Analysis in Domestic (가정집에서 가스폭발 위험성 분석)

  • Jo Young-Do;Kim Ji-Yun;Kim Sang-sub
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.2 s.14
    • /
    • pp.36-42
    • /
    • 2001
  • A leak of fuel gas in partially confined area creates a flammable atmosphere and give rise to an explosion, which is one of the most common accident in domestic. Observations from accident in domestic suggest that some explosions are caused by a quantify of fuel significantly less than lower explosion limit(LEL) amount required to fill the room, which is attributed to inhomogeneous mixing of leaked gas. The minimum amount of leaked gas for explosion is highly dependent on the mixing degree in the area. For lighter gas, such as methane, a high concentration tends to build up in the space from ceiling of room. But heavy gas, such as propane, a high concentration tends to build up in the space from bottom of room. This paper presents a method for analysing the explosion hazard in a room with very small amount of leaked gas. Based on explosion limit concentration, the gaussian distribution model is used to estimate the minimum amount of leak which yields a specified explosion pressure. The results demonstrate that catastrophic structural damage can be achieved with a volume of fuel gas which is less than 0.5 percent of the total enclosed volume in domestic. The method will help analyzing hazard to develop new safe device as well as investigating accident.

  • PDF

Optical Property of Zinc Oxide Thin Films Prepared by Using a Metal Naphthenate Precursor (금속 나프텐산염을 이용하여 제조한 ZnO 박막의 광학적 특성)

  • Lim, Y.M.;Jung, J.H.;Jeon, K.O.;Jeon, Y.S.;Hwang, K.S.
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.10 no.3
    • /
    • pp.193-203
    • /
    • 2005
  • Highly c-axis oriented nanocrystalline ZnO thin films on silica glass substrates were prepared by spin coating-pyrolysis process with a zinc naphthenate precursor. Only the XRD intensity peak of (002) phase was observed for all samples. With an increase in heat treatment temperature, the peak intensity of (002) phase increases. No significant aggregation of particle was present. From scanning probe microscopy analyses, three-dimensional grain growth, which was thought to be due to inhomogeneous substrate surface and c-axis oriented grain growth of the ZnO phase, was independent on heal-treatment temperature. Highly homogeneous surface of the highly-oriented ZnO film was observed at $800^{\circ}C$. All the films exhibited a high transmittance (above 80%) in visible region except film heat treated at $1000^{\circ}C$, and showed a sharp fundamental absorption edge at about $0.38{\sim}0.40{\mu}m$. The estimated energy band gap for all the films were within the range previously reported for films and single crystal. ZnO films, consisting of densely packed grains with smooth surface morphology were obtained by heat treatment at $600^{\circ}C{\sim}800^{\circ}C$, expected to be ideal for practical application, such as transparent conductive film and optical device.

  • PDF

Evaluations of Inhomogeneous Shimming in $^1$H MR Spectroscopy (자기공명분광에서 비균질 자장보정에 관한 평가)

  • Choe, Bo-Young;Baik, Hyeon-Man;Suh, Tae-Suk;Lee, Hyoung-Koo;Chun, Heung-Jae;Shim, Kyung-Sub
    • Progress in Medical Physics
    • /
    • v.11 no.1
    • /
    • pp.73-83
    • /
    • 2000
  • In this study, we investigate the effects of poor shimming on quantitative measurement of ratios of metabolite levels by proton magnetic resonance spectroscopy ($^1$H MRS). Coefficient of variation (COV) of metabolite ratios for point resolved spectroscopy (PRESS) and stimulated-echo acquisition mode (STEAM) spectra was evaluated from a phantom containing in vivo levels of metabolites using a conventional whole body 1.5T MR system and conventional acquisition and analysis protocol. A statistical P-value was also calculated from a linear regression for relationship of metabolite ratios. N-acetylaspartate (NAA)/ creatine (Cr) and NAA/ choline (Cho) had low COV values for the long and short TE spectra (29.1 and 27.5%; 23.8 and 12.6 %), whereas Cho/Cr and Cr/Cho had high COV values (50.0 and 68.6 %; 27.5 and 29.3 %). A linear relationship between NAA/Cr and Cho/Cr, and between NAA/Cho and Cr/Cho revealed the statistical significance in the long and short TE spectra, respectively (P < 0.0001 and P < 0.0001; P = 0.015 and P = 0.005). There was no significant relationship between Cho/NAA and Cr/NAA in the measurement (P = 0.159; P = 0.910). The present study suggested that NAA/Cr and NAA/Cho could be useful for data with poor shimming in $^1$H MR spectroscopy. In conclusion, statistical significance of metabolite ratios indicated that the Cr and Cho levels could be interpreted as a significant alteration factor in the long and short TE spectra, and then should be used with care to provide precise metabolite quantification.

  • PDF

Correction of Prompt Gamma Distribution for Improving Accuracy of Beam Range Determination in Inhomogeneous Phantom

  • Park, Jong Hoon;Kim, Sung Hun;Ku, Youngmo;Lee, Hyun Su;Kim, Young-su;Kim, Chan Hyeong;Shin, Dong Ho;Lee, Se Byeong;Jeong, Jong Hwi
    • Progress in Medical Physics
    • /
    • v.28 no.4
    • /
    • pp.207-217
    • /
    • 2017
  • For effective patient treatment in proton therapy, it is therefore important to accurately measure the beam range. For measuring beam range, various researchers determine the beam range by measuring the prompt gammas generated during nuclear reactions of protons with materials. However, the accuracy of the beam range determination can be lowered in heterogeneous phantoms, because of the differences with respect to the prompt gamma production depending on the properties of the material. In this research, to improve the beam range determination in a heterogeneous phantom, we derived a formula to correct the prompt-gamma distribution using the ratio of the prompt gamma production, stopping power, and density obtained for each material. Then, the prompt-gamma distributions were acquired by a multi-slit prompt-gamma camera on various kinds of heterogeneous phantoms using a Geant4 Monte Carlo simulation, and the deduced formula was applied to the prompt-gamma distributions. For the case involving the phantom having bone-equivalent material in the soft tissue-equivalent material, it was confirmed that compared to the actual range, the determined ranges were relatively accurate both before and after correction. In the case of a phantom having the lung-equivalent material in the soft tissue-equivalent material, although the maximum error before correction was 18.7 mm, the difference was very large. However, when the correction method was applied, the accuracy was significantly improved by a maximum error of 4.1 mm. Moreover, for a phantom that was constructed based on CT data, after applying the calibration method, the beam range could be generally determined within an error of 2.5 mm. Simulation results confirmed the potential to determine the beam range with high accuracy in heterogeneous phantoms by applying the proposed correction method. In future, these methods will be verified by performing experiments using a therapeutic proton beam.

The suggestion of Steel Plate-Concrete Composite Beam Shape with Bolts (볼트 체결형 강판-콘크리트 합성보의 형상 제안)

  • Cho, Tae-Gu;Choi, Byong-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.305-314
    • /
    • 2018
  • The steel-plate concrete composite beam is composed of a steel plate, concrete and a shear connector to combine the two inhomogeneous materials. In general, the steel plate is assembled by welding an existing composite beam. In this study, a new steel-plate concrete composite (SPCC) beam was developed to reduce the size of the shear connector and improve its workability. The SPCC beam was composed of folded steel plates and concrete, without any shear connector. The folded steel plate was assembled with high strength bolts instead of welding. To improve the workability in field construction, a hat-shaped cap was attached in the junction with the slab. Monotonic two-point load testing was conducted under displacement control mode. The flexural strength of the SPCC beam specimen was calculated to be 76% of that of the complete composite beam by using the plastic stress distribution method and strain compatibility method. The cap acted as the stud and accessory. The synthesis rate could be increased by controlling the gap of the cap, and the bending performance could be evaluated by using the strain fitting method considering the synthesis rate of the SPCC beam.