• Title/Summary/Keyword: Inhomogeneous

Search Result 674, Processing Time 0.029 seconds

Analysis about Flexural Strength of Steel Plate-Concrete Composite Beam using Folded Steel Plate (Cap) as Shear Connector (절곡 강판(Cap)을 전단연결재로 사용한 강판-콘크리트 합성보의 휨강도 분석)

  • Cho, Tae-Gu;Choi, Byong-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.481-492
    • /
    • 2018
  • The steel-plate concrete composite beam is composed of a steel plate, concrete and shear connector to combine two inhomogeneous materials. In general, the steel plate is assembled by welding an existing composite beam. In this study, the SPC beam was composed of folding steel plates and concrete, without a headed stud. The folding steel plate was assembled by a high strength bolt instead of welding. To improve the workability in a field construction, a hat-shaped cap was attached to the junction with a slab. Monotonic load testing under two points was conducted under displacement control mode to analyze the flexural strength of the SPC beam using a cap as the shear connector. Five specimens with shear connector types, protrusion length, and different thickness of steel plates were constructed and tested. The experimental results were analyzed through the relationship between the shear strength ratio and flexural strength in KBC 2009. The test results showed a shear strength ratio of more than 40 %. In the case of using a cap-like specimen as the shear connector, the flexural strength was 70% of the value calculated as a fully composite beam. In addition, the cap showed a smaller shear strength than the stud, but the cap served as a shear connection. When the thickness of the steel plate was taken as a variable, the steel plate exhibited a bending strength of approximately 70% compared to a fully formed steel plate, and exhibited similar deformation performance. Local buckling occurred due to incomplete composite behavior, but local buckling occurred at a 5% higher strength for a relatively thick steel plate. The buckling width also decreased by 15%.

Growth of Metal Nano-Particles on Polarity Patterned Ferroelectrics by Photochemical Reaction (광화학적 반응을 이용한 편극 패턴된 강유전체 표면에 금속 나노입자의 증착에 관한 연구)

  • Park, Young-Sik;Kim, Jung-Hoon;Yang, Woo-Chul
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.4
    • /
    • pp.300-306
    • /
    • 2011
  • We report the surface distribution of metal (Ag, Au) nanoparticles grown on polarity-patterned ferroelectric substrates by photochemical reaction. Single crystal periodically polarity-patterned $LiNbO_3$(PPLN) was used as a ferroelectric substrate. The nanoparticles were grown by ultra-violet (UV) light exposure of the PPLN in the aqueous solutions including metas. The surface distribution of the grown nanoparticles were measured by atomic force microscopy and identification of the orientation of the polarity of the ferroelectric surface was performed by piezoelectric force microscopy. The Ag- and Au-nanoparticles grown on +z polarity regions are larger and denser than that on -z polarity regions. In particlur, the largest and denser Ag-nanoparticles were grwon on the polarity boundary regions of the PPLN while Au-nanoparticles were not specifically grown on the boundary regions. Thus, we found that the size and position of metal nanoparticles grown on ferroelectric surfaces can be controlled by UV-exposure time and polarity pattern structures. Also, we discuss the difference of the surface distribution of the metal nano-particles depending on the polarity of the ferroelectric surfaces in terms of surface band structures, reduced work fucntion, and inhomogeneous electric field distribution.

Intercomparison of Change Point Analysis Methods for Identification of Inhomogeneity in Rainfall Series and Applications (강우자료의 비동질성 규명을 위한 변동점 분석기법의 상호비교 및 적용)

  • Lee, Sangho;Kim, Sang Ug;Lee, Yeong Seob;Sung, Jang Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.8
    • /
    • pp.671-684
    • /
    • 2014
  • Change point analysis is a efficient tool to understand the fundamental information in hydro-meteorological data such as rainfall, discharge, temperature etc. Especially, this fundamental information to change points to future rainfall data identified by reasonable detection skills can affect the prediction of flood and drought occurrence because well detected change points provide a key to resolve the non-stationary or inhomogeneous problem by climate change. Therefore, in this study, the comparative study to assess the performance of the 3 change point detection skills, cumulative sum (CUSUM) method, Bayesian change point (BCP) method, and segmentation by dynamic programming (DP) was performed. After assessment of the performance of the proposed detection skills using the 3 types of the synthetic series, the 2 reasonable detection skills were applied to the observed and future rainfall data at the 5 rainfall gauges in South Korea. Finally, it was suggested that BCP (with 0.9 posterior probability) could be best detection skill and DP could be reasonably recommended through the comparative study. Also it was suggested that BCP (with 0.9 posterior probability) and DP detection skills to find some change points could be reasonable at the North-eastern part in South Korea. In future, the results in this study can be efficiently used to resolve the non-stationary problems in hydrological modeling considering inhomogeneity or nonstationarity.

A Study on Seismic Source and Propagntion Characteristics using a Series of 12 Fukuoka Earthquakes (후쿠오카 지역에서 발생한 12개 지진의 지진원 밑 지진파 감쇠값에 관한 연구)

  • Kim, Jun-Kyoung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.1 s.53
    • /
    • pp.89-97
    • /
    • 2007
  • Parameters including the seismic sources and the elastic wave propagation characteristics were analysed using the observed ground motions from 12 Fukuoka region earthquakes. The Levenberg-Marquardt algorithm was applied to invert all the variables non-linearly and simultaneously with S wave energy in fiequency domain. Average stress drop of 12 events and local attenuation parameter $\kappa$ under seismic stations were estimated to about 79.2-bar and 0.043 respectively. Regional attenuation parameter, Qo and ${\eta}$, were also estimated to be about 248.1 and 0.558 respectively. Low value of Qo seems to caused by inhomogeneous tectonic characteristics between Japan island and southern Korean peninsula. $\kappa$ values are much higher than that characterizing EUS (Eastern United States) region, and nearly similar to that of WUS (Western Waited States) region. If the informations on site specific amplification of all the seismic stations are known, $\kappa$ values can be estimated more precisely. All the values including the seismic sources and the site and crustal scale propagation characteristics can be used as seismic design parameters.

Characteristics of Al2O3/ZrO2 Ceramics by the Dispersion Process of ZrO2 Particles (ZrO2 입자의 분산방법에 따른 Al2O3/ZrO2 요업체의 특성)

  • Youn, Sang-Hum;Kim, Jae-Jun;Hwang, Kyu-Hong;Lee, Jong-Kook;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.8 s.279
    • /
    • pp.561-566
    • /
    • 2005
  • For the homogeneous dispersion of $ZrO_2$ particles in $Al_2O_3/ZrO_2$ceramics, Zr-precusors were mixed with oxide $Al_2O_3$powders by chemical routes such as partial precipitation or partial polymerization of Zr-nitrate solutions. In case of the mechanical mixing of ultrafine $Al_2O_3$ and $ZrO_2$ oxide powders, relatively homogeneous dispersion was difficult to achieve so that the particle size and distributions of $ZrO_2$ were relatively inhomogeneous after sintering at high temperature. But when the Zr-Y-hydroxide were co-precipitated to ultrafine $Al_2O_3$ oxide powders followed by calcinations, homogeneous dispersion of nano-sized $ZrO_2$ particles in $Al_2O_3/ZrO_2$ composite ceramics were obtained. But because of the coalescence of dispersed $ZrO_2$ particles, dispersed $ZrO_2$ was grown up to more than 0.2${mu}m$ (200 nm) when sintered at the temperature of higher than $1500^{\circ}C$ But when the sintering temperature was kept to lower than $1400^{\circ}C$ by using nano-sized $\alpha-alumina$, the particle size of dispersed $ZrO_2$ could be sustained below 0.1 ${\mu}m$. But the coalescence of dispersed $ZrO_2$ between $Al_2O_3$ particles could not be avoided so that the mechanical properties were not enhanced contrary to the expectations. So Zr-polyester precursors were precipitated and coated to the surface of ultrafine $\alpha-alumina$ powders by the polymerization of Ethylene Glycol with Citric Acid and Zirconium Nitrate. By this dispersion much more uniform dispersion of $ZrO_2$ was achieved at $1450\~1600^{\circ}C$ of sintering temperature ranges. And due to especially discrete dispersion of $ZrO_2$ between $Al_2O_3$ particles, their mechanical strength was more enhanced than mechanical mixing or hydroxide precipitation methods.

Practical Virtual Compensator Design with Dynamic Multi-Leaf Collimator(dMLC) from Iso-Dose Distribution

  • Song, Ju-Young;Suh, Tae-Suk;Lee, Hyung-Koo;Choe, Bo-Young;Ahn, Seung-Do;Park, Eun-Kyung;Kim, Jong-Hoon;Lee, Sang-Wook;Yi, Byong-Yong
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.129-132
    • /
    • 2002
  • The practical virtual compensator, which uses a dynamic multi-leaf collimator (dMLC) and three-dimensional radiation therapy planning (3D RTP) system, was designed. And the feasibility study of the virtual compensator was done to verify that the virtual compensator acts a role as the replacement of the physical compensator. Design procedure consists of three steps. The first step is to generate the isodose distributions from the 3D RTP system (Render Plan, Elekta). Then isodose line pattern was used as the compensator pattern. Pre-determined compensating ratio was applied to generate the fluence map for the compensator design. The second step is to generate the leaf sequence file with Ma's algorithm in the respect of optimum MU-efficiency. All the procedure was done with home-made software. The last step is the QA procedure which performs the comparison of the dose distributions which are produced from the irradiation with the virtual compensator and from the calculation by 3D RTP. In this study, a phantom was fabricated for the verification of properness of the designed compensator. It is consisted of the styrofoam part which mimics irregular shaped contour or the missing tissues and the mini water phantom. Inhomogeneous dose distribution due to the styrofoam missing tissue could be calculated with the RTP system. The film dosimetry in the phantom with and without the compensator showed significant improvement of the dose distributions. The virtual compensator designed in this study was proved to be a replacement of the physical compensator in the practical point of view.

  • PDF

Effects of the Powder Preparation Method on the Magnetic Properties of Fe-based Amorphous Alloy Powder Cores (철계 비정질 합금 분말코아의 자기적 특성에 미치는 분말 제조방식의 영향)

  • Noh, T.H.;Choi, H.Y.
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.3
    • /
    • pp.191-197
    • /
    • 2005
  • In the fabrication process of Fe-based amorphous alloy powder cores by pulverization of the melt-spun ribbons and cold compaction, the effects of powder preparation method on the magnetic & electric properties, powder shapes and microstructure of cores have been investigated. The powder cores made by using rotor mill showed low effective permeability as compared to the cores prepared by ball milling. However the frequency dependence and quality factor properties were superior in the case of rotor-milling. Further the powders prepared by rotor mill had homogeneous and round shapes through strong shearing in the sieve ring, while the ball milled powders were inhomogeneous and relatively small. The lower permeability of the powder cores fabricated with rotor mill was considered to be due to the high internal stress occurred by very intensive shearing. Moreover the powder cores produced by rotor-milling showed lower core loss and good frequency dependence of effective permeability possibly due to the higher electrical insulation between magnetic particles. The dc bias property of the powder cores made by rotor-milling was better than the one by ball-milling.

Flexural Strength Evaluation of Steel Plate-Concrete Composite Beam using Bolted (절곡 강판을 볼트로 체결한 강판-콘크리트 합성보의 휨강도 평가)

  • Han, Myoung-Hwan;Choi, Byong-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.126-136
    • /
    • 2018
  • A steel-plate concrete composite beam is composed of a steel plate, concrete and shear connector to combine inhomogeneous two materials. The steel plate is assembled by welding an existing composite beam. In this study, new steel-plate concrete composite beam, called a SPC Beam, was developed to reduce the shear connector and improve the workability. The SPC Beam was composed of folding steel plates and concrete, without a shear connector. The folding steel plate was assembled using high strength bolt instead of welding. To improve the workability in field construction, a hat-shaped Cap was attached to the junction with a slab. Monotonic load testing under two points was conducted under displacement control mode. The flexural strength of the specimen for positive moment and negative moment was calculated using the plastic stress distribution method. The test results showed that the flexural strength of the new SPC Beam had 80% of the strength of a complete composite beam. In addition, increasing the composite ratio was possible through clearance controls of the cap. In this study, the performance of the SPC Beam was verified through additional experiments and analyses with the cross-sectional shape and cap as variables, because the representative shape in the positive negative moment region is targeted.

Imaging Features of Mucinous Breast Carcinoma (점액암의 영상소견)

  • Han, Hye-Jung;Kim, Sung-Hun;Cha, Eun-Suk;Kim, Hyun-Sook;Kang, Bong-Joo;Choi, Jae-Jung;Lee, Jee-Hye;Lee, Ah-Won
    • Investigative Magnetic Resonance Imaging
    • /
    • v.14 no.1
    • /
    • pp.21-30
    • /
    • 2010
  • Purpose : To examine the imaging findings of mucinous breast carcinoma and to evaluate the difference in these findings based on the histopathologic grade. Materials and Methods : We retrospectively analyzed the imaging features according to BI-RADS in 29 patients with surgically proven mucinous carcinoma. The histopathologic grade was classified as well-differentiated, moderately-differentiated and poorly-differentiated. Based on these criteria, the differences in imaging findings were statistically analyzed. Results : Mammography was available in 20 cases, which contained 17 mass lesions (85%) and 3 cases of normal findings. On ultrasonography (27 cases), mucinous carcinoma was observed as a mass with an oval shape (59.3%), a microlobulated margin (55.6%) or an inhomogeneous isoechogenicity (74.1%). On MRI (21 cases), mucinous carcinoma was commonly observed to have a lobular shape (76%), smooth margin (86%) or heterogeneous contrast-enhancement (61.9%). On the kinetic curve, there was a delayed wash-out pattern (52.3%). There were no significant differences in the imaging findings for each histopathologic grade except that a welldifferentiated tumor had an abrupt interface. Conclusion : A well-differentiated mucinous carcinoma tended to have an abrupt interface on ultrasonography, as compared with the moderately-differentiated one. Mucinous carcinoma showed a heterogeneous enhancement and a delayed washout kinetic curve pattern on dynamic MRI.

Selective Chemical Dealloying for Fabrication of Surface Porous Al88Cu6Si6 Eutectic Alloy (화학적 침출법을 통한 표면 다공성 Al-Cu-Si 공정 합금 제조)

  • Lee, Joonhak;Kim, Jungtae;Im, Soohyun;Park, Hyejin;Shin, Hojung;Park, Kyuhyun;Qian, M.;Kim, Kibeum
    • Korean Journal of Materials Research
    • /
    • v.23 no.4
    • /
    • pp.227-232
    • /
    • 2013
  • Al-based alloys have recently attracted considerable interest as structural materials and light weight materials due to their excellent physical and mechanical properties. For the investigation of the potential of Al-based alloys, a surface porous $Al_{88}Cu_6Si_6$ eutectic alloy has been fabricated through a chemical leaching process. The formation and microstructure of the surface porous $Al_{88}Cu_6Si_6$ eutectic alloy have been investigated using X-ray diffraction and scanning electron microscopy. The $Al_{88}Cu_6Si_6$ eutectic alloy is composed of an ${\alpha}$-Al dendrite phase and a single eutectic phase of $Al_2Cu$ and ${\alpha}$-Al. We intended to remove only the ${\alpha}$-Al phase and then the $Al_2Cu$ phase would form a porous structure on the surface with open pores. Both acidic and alkaline aqueous chemical solutions were used with various concentrations to modify the influence on the microstructure and the overall chemical reaction was carried out for 24 hr. A homogeneous open porous structure on the surface was revealed via selective chemical leaching with a $H_2SO_4$ solution. Only the ${\alpha}$-Al phase was successfully leached while the morphology of the $Al_2Cu$ phase was maintained. The pore size was in a range of $1{\sim}5{\mu}m$ and the dealloying depth was nearly $3{\mu}m$. However, under an alkaline NaOH, aqueous solution, an inhomogeneous porous structure on the surface was formed with a 5 wt% NaOH solution and the morphology of the $Al_2Cu$ phase was not preserved. In addition, the sample that was leached by using a 7 wt% NaOH solution crumbled. Al extracted from the Al2Cu phase as ${\alpha}$-Al phase was dealloyed, and increasing concentration of NaOH strongly influenced the morphology of the $Al_2Cu$ phase and sample statement.