• Title/Summary/Keyword: Initial Activation Checkout

Search Result 5, Processing Time 0.019 seconds

Spacecraft Bus Initial Activation and Checkout of a LEO Satellite (저궤도 위성의 본체 초기 점검)

  • Jeon, Moon-Jin;Kwon, Dong-Young;Kim, Day-Young
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.33-38
    • /
    • 2012
  • A LEO Satellite performs automatic initial operations by FSW after separation from a launch vehicle. After initial operation by FSW is finished, preparation for normal operation is performed by ground during bus initial activation and checkout phase. First of all, we check state of health of the satellite including solar array deployment status. After then, each unit of spacecraft bus is activated and checked. After activation and checkout of every units used for normal operation, we check maneuver performance for imaging mission and orbit maintenance performance. Because the Bus IAC is performed during limited ground contact time, every detailed procedure must be designed considering ground contact. Therefore, the Bus IAC procedure is separated into several parts based on ground contact duration. In addition, the procedures for every possible operation including expected situation as results of IAC procedures and unexpected contingency situation must be prepared. The contingency operation is also designed based on ground contact duration. The LEO satellite was successfully launched and the Bus IAC was successfully performed. In this paper, we explain design concepts and execution results of Bus IAC.

Analysis of Initial Activation and Checkout Results of Attitude Sensor Star Trackers for a LEO Satellite (저궤도 위성의 자세센서 별 추적기 초기 운용 분석)

  • Yim, Jo Ryeong;Choi, Hong-Taek
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.87-95
    • /
    • 2012
  • This technical paper describes the analysis results of telemetry data for the initial activation of star trackers for an agile high accuracy low earth orbit satellite. The satellite was recently launched and is in the Launch and Early Operation Phases. It uses two SED36 star trackers manufactured by SODERN. The star tracker is separated by three parts, an optical head, an electronics box, and a baffle with maintaining optical head base plate temperature 20 degC in order to achieve the better performance in low frequency error. This paper presents the initial activation status, requirements and performance, anomaly occurrence, and noise equivalent angle performance analysis during the mission mode by processing the telemetry data.

Mission Operation Capability Verification Test for Low Earth Orbit(LEO) Satellite by Utilizing Interface Environment between LEO Satellite and Ground Station (저궤도 위성과 지상국간 접속 환경을 활용한 임무수행능력 지상 검증 시험)

  • Lee, Sang-Rok;Koo, In-Hoi;Lim, Seong-Bin
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.142-149
    • /
    • 2014
  • After launch of Low Earth Orbit(LEO) satellite, Initial Activation Checkout(IAC) and Calibration and Validation(Cal & Val) procedure are performed prior to enter normal operation phase. During normal operation phase, most of the time is allocated for mission operation except following up measures to anomaly and orbit maintenance. Since mission operation capability is key indicator for success of LEO satellite program and consistent with promotion purpose of LEO satellite program, reliability should be ensured by conducting through test. In order to ensure reliability by examining the role of LEO satellite and ground station during ground test phase, realistic test scenario that is similar to actual operation conditions should be created, and test that aims to verify full mission cycle should be performed by transmitting created command and receiving image and telemetry data. This paper describes the test design and result. Consideration items for test design are described in detail and result of designed test items are summarized.

저궤도 위성 S-밴드 안테나의 상향 링크 극성 전환 기준

  • Gwon, Dong-Yeong;Jeon, Mun-Jin;Lee, Na-Yeong;Kim, Dae-Yeong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.170.1-170.1
    • /
    • 2012
  • 지구 저궤도 위성은 위성 천저에 S-밴드 RHCP 안테나, 위성 천정에 S-밴드 LHCP 안테나를 이용하여 S-밴드 통신을 수행하고 있다. 위성이 천저 지향 자세로 지상국을 지나가는 경우에는 패스의 모든 시간을 RHCP 안테나로 통신을 하면 되지만, 태양 지향 자세로 지상국을 지나가는 경우에는 지상국 송수신 안테나의 극성을 전환하는 것이 필요하다. IAC (Initial Activation & Checkout) 기간 중의 상향 링크의 안테나 극성 전환 기준은, 안테나의 설계 상빔 범위 각도를 벗어나는 시점에 기존 안테나와의 통신을 중지하고 반대 극성의 안테나와의 통신을 위해 상향링크 형성을 지속적으로 시도하는 것이다. 그러나 실제 운용 결과, 설계 상빔 범위 각도를 벗어나더라도 충분히 명령을 보낼 수 있음을 확인하였으며, 짧은 패스 시간에 보다 많은 명령을 전송하기 위해 새로운 극성 전환 기준이 필요하다. 본 논문에서는 하향 신호 세기의 텔레메트리 정보를 이용한 상향 링크 안테나 극성 전환 기준을 제시하며, 기존방식에 비해 전송 시간 확보 측면에서 개선됨을 정리하였다.

  • PDF

The Interface Test between LEO Satellite and Ground Station (저궤도위성과 지상국 간 접속 검증 시험)

  • Kwon, Dong-Young;Jung, Ok-Chul;Kim, HeeSub
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.49-56
    • /
    • 2012
  • LEO Satellite performs the operations and missions by FSW(Flight Software) after separation from a launch vehicle. Many of the operations by FSW are automatically conducted by the algorithms of FSW. In the case of the IAC(Initial Activation and Checkout) operations, a mission scheduling, an orbit transition, etc, however, a decision and a control of the satellite operators or manufacturers are required in order to operate the satellite safely. For this, the wireless communication channel between a satellite and a ground station should be prepared to receive telemetries and to transmit tele-commands for controlling FSW properly. Therefore, the verification of the interface between KOMPSAT-3 and a ground station is essential. This verification test is named the satellite end-to-end test. In this paper, we show the design process of the satellite end-to-end test and test results.