• Title/Summary/Keyword: Injection Blow Molding

Search Result 26, Processing Time 0.027 seconds

A Study on the Molding Technology for the Preform of Blow Molding Through Compression Molding (압축성형을 통한 블로우 성형품용 프리폼 성형기술 연구)

  • Choi, S.H.;Min, H.K.;Lyu, M.Y.
    • Transactions of Materials Processing
    • /
    • v.16 no.1 s.91
    • /
    • pp.3-8
    • /
    • 2007
  • Novel compression molding system for preform has been developed in this study. The preforms for injection blow molding and injection stretch blow molding are being manufactured by injection molding. However it contains gate mark that affects the bottom crack in the PET bottle. The compression molded preform does not contain gate mark, thus the appearance quality of bottle has been increased and the residual stress near gate(bottom of the bottle) has been reduced. The thickness distributions, haze, and transmittance are well accepted for the preform. Also, flow characteristics of the resin between a core and cavity could be analyzed through computer simulation.

Study on numerical analysis and experiment of the injection/ blow molding of a preform of PET Bottle (페트용기 성형을 위한 프리폼 사출성형 및 블로우 성형의 실험 및 해석에 관한 연구)

  • Kim, Jeong-Soon;Kim, Jong-Deok;Kim, Ok-Rae;Kwon, Chang-Oh
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.5
    • /
    • pp.1119-1124
    • /
    • 2008
  • This study presents the preform injection molding and the blow molding of the injection stretch-blow molding process for PET bottles. The numerical analysis of the injection molding and the blow molding of a preform is considered in this paper using CAE with a view to minimize the warpage and the thickness. In order to determine the design parameters and processing conditions in injection/blow molding, it is very important to establish the numerical model with physical phenomenon. In this study, a three dimensional model has been introduced for the purpose and flow simulations of filling, post-filling and cooling process are carried out. The simulations resulted in the warpage in good agreement with the measurements. Also, from the result of numerical analysis, we appropriately predicted the warpage, deformation and thickness distribution along the product walls.

Simulation Study on the Effect of Pre-blow Timing on the Injection Stretch Blow Molding

  • Dong-Hae Choi;Kyoung Woo Nam;Min-Young Lyu
    • Elastomers and Composites
    • /
    • v.57 no.4
    • /
    • pp.138-146
    • /
    • 2022
  • Research on the reduction of plastic use to prevent environmental pollution is urgently needed. Accordingly, studies on reducing the weight of polyethylene terephthalate (PET) bottles are currently being conducted. PET bottles are fabricated by injection stretch blow molding. In this study, stretch blow molding for fabricating PET bottles using preform studied through a computer simulation. Blowing characteristics are analyzed by varying the start time of the pre-blow, which is one of the process conditions of stretch blow molding. Simulation results and the preform inflation process are presented, and the parameters of stretch ratio, stretching path, thickness distribution, and weight distribution of blown PET bottles are investigated.

Effects on the process factors of blow molding affects to the PET bottle (블로우 성형공정변수가 PET 용기에 미치는 영향에 관한 연구)

  • Kim, Jong-Dug;Go, Young-Bae;Kim, Ok-Rae;Park, Hyung-Pil;Kim, Hong-Ryul;Kwon, Chang-Oh
    • Design & Manufacturing
    • /
    • v.2 no.6
    • /
    • pp.7-10
    • /
    • 2008
  • Injection-stretch blowing system for preform has been developed in this study. The preforms for injection blow molding and injection stretch blow molding are being manufactured by injection molding. However it contains gate mark that affects the bottom crack in the PET bottle. The compression molded preform does not contain gate mark, thus the appearance quality of bottle has been increased and the residual stress near gate(bottom of the bottle) has been reduced. The thickness distributions, haze, and transmittance are well accepted for the preform. Also, flow characteristics of the resin between a core and cavity could be analyzed through computer simulation.

  • PDF

A numerical study on blow molding for manufacturing PET bottle consisted of single body (손잡이 일체형 PET 용기 제작을 위한 블로우 성형에 대한 수치적 연구)

  • Kim, Jong-Duck;Go, Young-Bae;Kim, Hong-Ryul;Kwon, Chang-Oh
    • Design & Manufacturing
    • /
    • v.2 no.3
    • /
    • pp.22-27
    • /
    • 2008
  • Forming of PET bottle was performed by injection-stretch blow molding. Blow molding is process of contacting the dies with air of materials by pressing. In this paper, the aim was to improve reliability of technical stabilization for the PET bottle that is last productive product and process technology which was able to do maximization by a preform performance enhancement of the uniform thickness that took temperature and a characteristic of materials. Preform design and dies manufacture were conducted using injection blow molding analysis results. Therefore thickness error of 5% for PET bottle can be obtained in this paper.

  • PDF

Numerical study on the blowing deformation characteristics of a square shaped preform (사각 프리폼 블로우 성형 특성에 관한 수치적 연구)

  • Cho, Seung-Hyun;Song, Min-Jae;Lee, Dong-Won;KO, Young-Bae
    • Design & Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.1-8
    • /
    • 2015
  • This study presents the preform injection molding and the blow molding of the injection stretch-blow molding process for PET bottles. The numerical analysis of the injection molding and the blow molding of a preform is considered in this paper using CAE with a view to minimize the warpage and the thickness. In order to determine the design parameters and processing conditions in injection/blow molding, it is very important to establish the numerical model with physical phenomenon. In this study, we appropriately predicted the warpage, deformation and thickness distribution along the product walls.

  • PDF

Study on Preform Design for Reducing Weight of PET Packaging Bottle (고분자 패키징 용기 중량 절감을 위한 프리폼 설계에 관한 연구)

  • Kim, Jeong-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 2010
  • This study presents the preform injection molding and the blow molding of the injection stretch-blow molding process for PET bottles. The numerical analysis of the injection molding and the blow molding of a preform is considered in this paper using CAE with a view to minimize the warpage and the thickness. In order to determine the design parameters and processing conditions in injection/blow molding, it is very important to establish the numerical model with physical phenomenon. In this study, a three dimensional model has been introduced for the purpose and flow simulations of filling, post-filling and cooling process are carried out. The simulations resulted in the warpage in good agreement with the measurements. Also, from the result of numerical analysis, we appropriately predicted the warpage, deformation and thickness distribution along the product walls.

Blow Characteristics in Extrusion Blow Molding for Operational Conditions (압출 블로우 성형에서 성형조건에 따른 성형특성)

  • Jun Jae Hoo;Pae Youlee;Lyu Min-Young
    • Transactions of Materials Processing
    • /
    • v.14 no.3 s.75
    • /
    • pp.233-238
    • /
    • 2005
  • Blow molding is divided into three categories, injection stretch blow molding, injection blow molding, and extrusion or direct blow molding. Extrusion blow molding has been studied experimentally to characterize the blowing behavior of parison. Blow conditions such as blowing temperature and cooling time were the experimental variables in this blowing experiment. Wall thickness of the lower part of blow molded sample was thicker than that of the upper part because of the sagging of parison during extrusion process. As temperature increases the wall thickness and the weight of blow molded sample decreased. No thickness variations in the blowing sample were observed according to the cooling time. The lower part of the sample showed high degree of crystallinity compare with the upper part of the sample. Thus the lower part of the sample was strong mechanically and structurally. It was recognized that the uniform wall thickness could not be obtained by only controlling the operational conditions. Parison variator should be introduced to get uniform wall thickness of parison and subsequently produce uniform wall thickness of blow molded product.

Finite element analysis of a injection blow molding process for the thick-walled PET bottle (후육 벽 PET 용기에 대한 사출 블로우 성형의 유한요소해석)

  • Hong, Seok-Kwan;Song, Min-Jae;Ko, Young-Bae;Cha, Baeg-Soon
    • Design & Manufacturing
    • /
    • v.12 no.3
    • /
    • pp.5-12
    • /
    • 2018
  • Plastic containers which provides the opportunity to reduce transportation costs are lighter and less brittle than glass containers. As a results, efforts to replace glass with plastic are ongoing. The blow molding method is a typical approach in producing plastic containers. Single-stage injection blow molding (ISBM) is one of the blow molding methods. However, the difficulty in controlling the temperature during the injection molding process is considered its main disadvantage. In this study, ISBM process analysis of relatively thick walled containers such as cosmetic containers is carried out. The initial temperature distribution of the preform is deemed to be the most influential factor in the accuracy of blow molding for the thick vessel. In order to accurately predict this, all heat transfer processes of the preform are considered. The validity of this analytical procedure is verified by comparing the cross-sectional thickness with the actual product. Finally, the validated analytical method is used to evaluate the factors affecting the thickness of the final molded part. The ISBM analysis technique for thick walled vessels developed through this study can be used as an effective predictor for preform design and blow process.

Numerical study on the effect of the PET bottle thickness difference for blow molding process conditions (블로우 성형 공정 변수가 PET 용기의 두께 편차에 미치는 영향에 관한 수치해석 연구)

  • Kim, Jeong-soon;Kim, Jong-duck
    • 대한공업교육학회지
    • /
    • v.34 no.2
    • /
    • pp.321-330
    • /
    • 2009
  • This study presents the blow molding of injection stretch-blow molding process for PET bottle. The numerical analysis of the blow molding of PET bottle is considered in this paper using CAE with a view to minimize the thickness difference. In order to determine the design parameters and processing conditions in blow molding, it is very important to establish the numerical model with physical phenomenon. In this study, a shell model with thickness has been introduced for the purpose and blow simulations with 3-type blow process condition are carried out. The simulations resulted in the thickness distribution in good agreement with the physical phenomenon. Also, from the result of numerical analysis, we appropriately predicted the thickness distribution along the PET bottle wall and Using the result of numerical analysis we apply the preform design and blow molding process condition for optimization.