• Title/Summary/Keyword: Injection Molding

Search Result 1,555, Processing Time 0.044 seconds

Axiomatic Design of Mold System for Advance of Foaming Magnitude (발포 배율의 향상을 위한 금형 시스템의 공리적 설계)

  • Hwang, Yun-Dong;Cha, Seong-Un
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.637-644
    • /
    • 2001
  • Polymer materials have a lot of merits including the low cost and the easiness of forming. For these reasons they are widely using at many manufacturing industries. Microcellular foaming process appeared at MIT in 1980s to save a quantity of material and increase mechanical properties. There are many process variables in appling microcellular foaming process to the conventional injection molding process. They can be solved by using Axiomatic Design Method which is very useful design method for designing a new product. Its main character is scientific and analytical. The information about the thickness of cavity plays an important role in making an effective foam. The goal of this research is to design mold system for advance of foaming magnitude with axiomatic design method. There is a relation between the change of cavitys thickness and foaming magnitude made after inserting a gas. R/t is a conception that indicate proportion between radius and thickness of cavity in mold system. By means of SEM observation of side surface of cavity sample, foaming magnitude of polymer in microcellular foaming process is decreasing gradually as the value of R/t is increasing. In this paper, an advanced mold system was presented by mapping the relation between functional requirements and design parameters.

Design of Heat-Activated Reversible Integral Attachments for Product-Embedded Disassembly

  • Li, Ying;Kikuchi, Noboru;Saitou, Kazuhiro
    • International Journal of CAD/CAM
    • /
    • v.3 no.1_2
    • /
    • pp.19-29
    • /
    • 2003
  • Disassembly is a fundamental process needed for component reuse and material recycling in all assembled products. Integral attachments, also known as 'snap' fits, are favored fastening means in design for assembly (DFA) methodologies, but not necessarily a favored choice for design for disassembly. In this paper, design methods of a new class of integral attachments are proposed, where the snapped joints can be disengaged by the application of localized heat sources. The design problem of reversible integral attachments is posed as the design of compliant mechanisms actuated with localized thermal expansion of materials. Topology optimization technique is utilized to obtain conceptual layout of snap-fit mechanisms that realizes a desired deformation of snapped features for joint release. Two design approaches are attempted and design results of each approach are presented, where the geometrical configuration extracted from optimal topologies are simplified to enhance the manufacturability for the conventional injection molding technologies. To maximize the magnitude of deformation, a design scheme has been proposed to include boundary conditions as design variables. Final designs are verified using commercial software for finite element analysis.

Development of Scheduler Based on Simulation for Phone Camera Lens Module Manufacturing System (폰카메라 렌즈모듈 제조시스템을 위한 시뮬레이션 기반의 스케줄러 개발)

  • Kim, Jae Hoon;Lee, Seung Woo;Lee, Dae Ryoung;Park, Chul Soon;Song, Jun Yeob;Moon, Dug Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.23 no.4
    • /
    • pp.131-142
    • /
    • 2014
  • Phone camera lens module is assembled with a barrel, multiple lenses, multiple spacers and a shield. The major processes of manufacturing system are injection molding, coating and assembly processes, and each process has multiple machines. In this paper, we introduce a scheduler based on simulation model which can be used for frequent rescheduling problem caused by urgent orders, breaking down of molds and failures of machines. The scheduling algorithm uses heuristic Backward-Forward method, and the objective is to minimize the number of tardy orders.

Development of Disposable Enzyme-linked Immunosensor Strip Platform (일회용 스트립형 효소면역센서용 플랫폼의 개발)

  • Choi, Ji-Hye;Yi, Seung-Jae;Chang, Seung-Cheol;Kim, Kyung-Chun
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.400-405
    • /
    • 2011
  • This study introduced the development of a strip type disposable enzyme-linked immunosensor platform for the detection of IgG. Strips of the strip sensor were fabricated by using commercial nitrocellulose filter membranes and a housing holder for the strips was manufactured by using a standard injection molding process for a plastic material. An IgG-urease conjugate was prepared and used for the competitive immune-binding with sample IgG. From the enzymatic reaction between the conjugated urease and urea added, ammonia was generated and caused a localized alkaline pH change on the immobilized antibody band which was coated onto the sensor strips. This pH increase subsequently caused a color change of the antibody band in the presence of a pH indicator, phenol red. Used in conjunction with a competitive immunoassay format, the intensity of the color produced is directly linked with the concentration of target analyte, IgG, and specific measurement of IgG in a lateral flow immunoassay format was achieved over the range 100 ppb to 2000 ppb IgG.

Ultra-precision Cutting of Polycarbonate for Optical Components by Using Elliptical Vibration Cutting Method (타원진동절삭가공법에 의한 광학부품용 폴리카보네이트 수지의 초정밀가공)

  • Song, Young-Chan;Park, Chun-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.6
    • /
    • pp.42-49
    • /
    • 2009
  • The optical elements made of plastics are normally produced by mass production such as injection molding with use of precision dies and molds. It costs to prepare the dies and molds, and it is only justified to prepare such expensive dies and molds when the parts are massively produced. On the other hand, it is too expensive and inefficient when precision plastic parts are needed only in small quantities, such as a case of trial manufacturing of new products. An ultra-precision diamond cutting is one of promising processes to produce the precision plastic parts in such cases. But it is commonly believed that an ultra-precision cutting of plastics for optical components is very difficult, because they are thermo-plastic material. In the present research, an ultra-precision diamond cutting of polycarbonate (PC), that is one of typical optical materials, was tried by using elliptical vibration cutting method. It is experimentally proved that good optical surfaces were obtained by using elliptical vibration cutting in cases of grooving and flat surfaces. The maximum surface roughness of less than 60 nm in peak to valley value is acquired.

Material Properties Evaluation of 1-3 type Piezo-composite Fabricated with CIM Technology (CIM 기술로 제조한 1-3 형 압전복합체의 물성 평가)

  • Im, J.I.;Shin, S.Y.;Kim, J.H.;Lim, S.J.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.196-199
    • /
    • 2012
  • Generally the piezo-composites have superior hydrostatic response characteristics than PZT ceramics due to both the stress amplification effect in axial direction and stress reduction effects in radial direction. This paper described material properties of a 1-3 type piezo-composite that fabricated with ceramic injection molding (CIM) technology. The electro-mechanical performances of the composite have been analyzed using FEM and the physical properties of the composite have been measured with the vol. % of the PZT ceramics. Based on the results, the $k_t$ increased rapidly as the vol. % of the PZT ceramics increased up to 30 vol. % and saturated the constant value in the above region. Also the experimental results have good agreement with the simulation values of the composite. Finally we developed the composites having high piezoelectric properties than the PZT ceramics with the CIM technology.

  • PDF

A Study on the Fabrication Method of Mold for 7 inch LCD-BLU by continuous microlens 200μm (연속마이크로렌즈 200μm 적용 7인치 LCD-BLU 금형개발)

  • Kim, J.S.;Ko, Y.B.;Min, I.K.;Yu, J.W.;Heo, Y.M.;Yoon, K.H.;Hwang, C.J.
    • Transactions of Materials Processing
    • /
    • v.16 no.1 s.91
    • /
    • pp.42-47
    • /
    • 2007
  • LCD-BLU is one of kernel parts of LCD and it consists of several optical sheets: LGP, light source and mold frame. The LGP of LCD-BLU is usually manufactured by etching process and forming numerous dots with $50\sim300{\mu}m$ diameter on the surface. But the surface of the etched dots of LGP is very rough due to the characteristics of the etching process during the mold fabrication, so that its light loss is high along with the dispersion of light into the surface. Accordingly, there is a limit in raising the luminance of LCD-BLU. In order to overcome the limit of current etched dot patterned LGP, optical pattern with continuous microlens was designed using optical simulation CAE. Also, a mold with continuous micro-lens was fabricated by UV-LiGA reflow process and applied to 7 inch size of navigator LCD-BLU in the present study.

A Study on the Fabrication Method of Mold for 2 inch LCD-BLU by 50μm Microlens : Effect of Different Aspect Ratio (50μm급 마이크로렌즈 적용 2인치 휴대폰 LCD-BLU 금형 개발 : 광학패턴의 세장비 영향)

  • Kim, J.S.;Ko, Y.B.;Min, I.K.;Yu, J.W.;Heo, Y.M.;Yoon, K.H.;Hwang, C.J.
    • Transactions of Materials Processing
    • /
    • v.16 no.1 s.91
    • /
    • pp.48-53
    • /
    • 2007
  • LCD-BLU(Liquid Crystal Display - Back Light Unit) consists of several optical sheets: LGP(Light Guiding Plate), light source and mold frame. The LGP of LCD-BLU is usually manufactured by etching process and forming numerous dots with $50{\mu}m$ in diameter on the surface. But the surface roughness of LGP with etched dots is very high, so there is much loss of light. In order to overcome the limit of current etched dot patterned LGP, optical pattern design with microlens of $50{\mu}m$ diameter was applied in the present study. The microlens pattern fabricated by modified LiGA with thermal reflow process was applied to the optical design of LGP and optical simulation was carried out to know tendency of microlens patterned LGP simultaneously. The attention was paid to the effects of different aspect ratio(i.e. $0.2\sim0.5$) of optical pattern conditions to the brightness distribution of BLU with microlens patterned LGP. Finally, high aspect ratio microlens patterned LGP showed superior results to the one made by low aspect ratio in average luminance.

FEA for Fabrication Process of PZT Preform Using CIM (CIM을 이용한 PZT 프리폼의 제조공정에 대한 유한요소해석)

  • Shin, Ho-Yong;Kim, Jong-Ho;Jang, Jong-Soo;Baek, Seung-Min;Im, Jong-In
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.700-707
    • /
    • 2009
  • This paper described finite element analysis (FEA) for fabrication processes of PZT perform using ceramic injection molding (CIM). The viscosity and the PVT characteristics of the manufactured PZT feedstock were measured. The filling patterns, pressure and temperature distributions of the preform were analyzed with TIMON 3D packages during CIM process. The geometrical variables such as gate type, location, and base thickness of the preform were considered. Also the fabrication conditions of the preform were optimized during the entire CIM process. Based on the simulated results, the various good perform was easily fabricated with the CIM process.

Robust Design of the Gate System for Flatness Improvement in Semi-Solid Casting Processes (반응고 주조공정에서 평면도 증대를 위한 게이트시스템의 강건설계)

  • Song, In-Ho;Chung, Sung-Chong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.2
    • /
    • pp.130-136
    • /
    • 2009
  • Semi-solid casting(SSC) of magnesium alloys is increasingly being used to produce high quality components. This process is similar to the injection molding of plastics and is called thixomolding. Using this process, higher strength, thinner wall sections and tighter tolerances without porosity are obtained. The high strength and low weight characteristics of magnesium alloys render the high-precision fabrication of thin-walled components with large surface areas. They are widely used for the IT, auto and consumer electronics industries. However, warpage of the thin-walled sections degrade quality of the parts produced in the SCC process. To produce thin-walled magnesium alloy parts, the geometry of gating system on the quality of the finished products should be clearly studied. In this paper, to minimize warpage of the thin-walled sections, Taguchi method is applied to the optimal design of the gate geometry in the thixomolding process. Width, height, length and angle of the gating system are selected for the robust design parameters. Effectiveness of the robust design is verified through the CAE software.