• Title/Summary/Keyword: Injection Speed

Search Result 849, Processing Time 0.024 seconds

Ground Speed Control of a Direct Injection Sprayer

  • Koo, T.M.;Sumner, H.R.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.500-510
    • /
    • 1996
  • A Direct injection -mixing total -flow -control sprayer was developed and evaluated . The system provided precise application rates and minimized operator exposure to chemicals as well as providing a possibility for recycling container so f unused chemicals that can causes environmental contamination. Chemicals were metered and injected proportionally to the diluent flow rate to provide constant concentrations. The main diluent flow was varied in response to changes in travel speed. Experimental variables of the sprayer were the control interval, the sensitivity of flow regulating valve, the tolerance of control object and the sensitivity of the injection pump system. The optimal performance of the flow control system was with an average response time of 8.5 sec at an absolute steady state of error of 0.067 L/min (0.8% of flow rate). The average response time of the injection rate was -0.53 sec and the coefficient of variation (CV) of concentration was 3.2%.

  • PDF

A study on monitoring for process time and process properties by measuring vibration signals transmitted to the mold during injection molding (사출성형공정에서 금형에 전달되는 진동 신호 측정을 이용한 성형 단계별 공정시간과 공정특성의 모니터링에 대한 연구)

  • Lee, Jun-han;Kim, Jong-Sun
    • Design & Manufacturing
    • /
    • v.14 no.3
    • /
    • pp.8-16
    • /
    • 2020
  • In this study, the vibration signal of the mold was measured and analyzed to monitoring the process time and characteristics during injection molding. A 5 inch light guide plate mold was used to injection molding and the vibration signal was measured by MPU6050 acceleration sensor module attached the surface of fixed mold base. Conditions except for injection speed and packing pressure were set to the same value and the change of the vibration signal of the mold according to injection speed and packing pressure was analyzed. As a result, the vibration signal had a large change at three points: "Injection start", "V/P switchover", and "Packing end". The time difference between "injection start" and "V/P switchover" means the injection time in the injection molding process, and the time difference between "V/P switchover" and "Packing end" means the packing time. When the injection time and packing time obtained from the vibration signal of the mold are compared with the time recorded in the injection molding machine, the error of the injection time was 2.19±0.69% and the error of the packing time was 1.39±0.83%, which was the same level as the actual value. Additionally, the amplitude at the time of "injection start" increased as the injection speed increased. In "V/P switchover", the amplitude tended to be proportional to the pressure difference between the maximum injection pressure and the packing pressure and the amplitude at the "packing end" tended to the pressure difference between the packing pressure and the back pressure. Therefore, based on the result of this study, the injection time and packing time of each cycle can be monitored by measuring the vibration signal of the mold. Also, it was confirmed that the level and trend of process variables such as the injection speed, maximum injection pressure, and packing pressure can be evaluated as the change of the mold vibration during injection molding.

Study molded part quality of plastic injection process by melt viscosity evaluation

  • Lin, Chung-Chih;Wu, Chieh-Liang
    • Advances in materials Research
    • /
    • v.3 no.2
    • /
    • pp.91-103
    • /
    • 2014
  • A study that demonstrates how to investigate the molded part quality and the consistency of injection process based on the rheological concept is proposed. It is important for plastic material whose melt viscosity is variable with respect to the processing condition. The formulations to couple the melt viscosity with injection pressure and fill time are derived first. Taking calculations of the measured pressure and the time by using these formulations, the melt viscosity in injection process can be determined on machine. As the relation between the injection speed and the melt viscosity is constructed, the influences of the setting parameter of injection machine on the molded part quality can be investigated through evaluating the state of the melt viscosity. In addition, a pressure sensor bushing (PSB) designed with a quick installation feature is also provided and validated. The results show that a higher injection speed improves the tensile strength of the molded part but also the consistency of the molded part quality. This work provides an alternative to evaluate the molding quality scientifically.

A Study on the Formation of Gate Mark in Injection Molding (사출성형에서 Gate Mark의 형성에 관한 연구)

  • Kim, J.M.;Kim, D.W.;Hwang, S.J.;Lyu, M.Y.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.628-632
    • /
    • 2006
  • The gate mark in injection molded part is a kind of surface defects. The formation of gate mark has been investigated in this study. SEM photographs and surface roughness have been examined to study gate mark. The specimens were molded for various injection conditions, such as injection temperature, mold temperature, and injection speed. Gate diameter and mold surface condition were also molding variables. Gate marks were reduced as injection speed and mold temperature increased. Gate diameter and injection temperature did not affect the gate marks. No etching of mold surface showed no gate marks for any molding conditions.

Performance Simulation for the Variation of Fuel Injection Nozzle Configurations in Medium Speed Diesel Engine (중형 디젤 엔진의 연료분사노즐 형상에 따른 성능 해석 연구)

  • Kim, Ki-Doo;Youn, Wook-Hyun;Kim, Byong-Seok;Ha, Ji-Soo;Ahn, Kwang-Hean;Kim, Ju-Tae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.662-668
    • /
    • 2006
  • The effects of fuel injection nozzle hole on the NOx emission and fuel oil consumption of medium speed diesel engine HYUNDAI HiMSEN 6H21/32 engine are investigated by engine performance simulation. The results of performance simulation are verified by experimental results of NOx omission fuel oil consumption, cylinder pressure, and heat release rate according to the variation of the number of fuel injection nozzle hole and engine load. The performance simulations are also carried out to optimize the fuel injection nozzle of 6H21/32 engine in respect to the NOx emission and fuel oil consumption. The engine performance measurements are performed to verify the results of performance simulation and to investigate the effects of fuel injection nozzle on engine performance. The results of measurement indicate that significant NOx reduction can be achieved with minimum deterioration in fuel oil consumption by optimizing the geometry of fuel injection nozzle on 6H21/32 engine.

A Simple Strategy for Sensorless Speed Control for an IPMSM During Startup and Over Wide Speed Range

  • Sim, Hyun-Woo;Lee, June-Seok;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1582-1591
    • /
    • 2014
  • This paper presents a hybrid sensorless control for an interior permanent magnet synchronous motor (IPMSM) for zero-, low-, and high-speed regions. Many sensorless control methods such as an observer-based estimator have been introduced. However, most of the observer-based estimators have a disadvantage at start-up and in the low-speed region. To solve this problem, a simple strategy of using a hybrid system is proposed by integrating a high-frequency (HF) signal injection method and a full-order flux observer. In addition, an HF signal injection method with only a low pass filter (LPF) is proposed to simplify the hybrid system. The hybrid system achieves high-performance drive throughout the entire speed range. The effectiveness of the proposed hybrid technique is verified by experiments using an 11-kW IPMSM drive system.

The effects of Gasoline-Biodiesel Blended Fuels on Spray Characteristics (스프레이 특성에 가솔린 - 바이오 디젤 혼합 연료의 효과)

  • THONGCHAI, SAKDA;LIM, OCKTAECK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.3
    • /
    • pp.287-293
    • /
    • 2015
  • The current study has investigated the effects of biodiesel blended with gasoline on the spray characteristics in a Constant Volume Combustion Chamber (CVCC). With the concentration of 5, 10, 15 and 20% by volume, biodiesel was blended with commercial gasoline and performed on the macroscopic visualization test. Pure gasoline and biodiesel were also tested as the reference. The shadowgraph technique was conducted in the constant volume chamber. The spray images were recorded by a high speed video camera with frame speed 10,000 frame per second. Fuel injection was set at 800, 1000 and 1,350 bar with the simulated speed 1,500 and 2,000 rpm. The back pressure was controlled at 20 bar. The spray angle and penetration tip were measured and analyzed by using the image processing. At the high injection pressure, the spray penetration length with the simulated speed 1,500 rpm showed that B100 was lower than GB00-20 whereas the spray penetration length with the simulated speed 2,000 rpm exhibited that GB blends and B100 were insignificantly different. Due to biodiesel concentration, its effects on spray angles were observed throughout injection periods (T1, T2 and T3). At the simulated speed 1,500 rpm, the spray angle of GB blends and B100 presented the same pattern following injection timing. In addition, when the simulated speed increased to 2,000 rpm the different spray angle of all blends disappeared at main injection (T3).

Experimental Study on Natural Gas Conversion Vehicle(2) - Evaluation of Injection System (천연가스 개조 승용차에 대한 실험적 연구(2) - 분사 시스템 평가)

  • Kim, Hyung-Gu;Kwon, Suntae;Ohm, Inyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.4
    • /
    • pp.444-453
    • /
    • 2015
  • In the previous study, several problems were observed in a NG conversion vehicle, which were fail of air-fuel ratio closed loop control, aggravated fuel economy, increased harmful emission and declined roadability. It was provisionally supposed that the mismatch of injection system with the engine caused these performance deterioration. In this context, the characteristics of fuel injection system of commercial conversion kit for NG were investigated experimentally varying the engine speed, fuel rail pressure and volume. The results are as follows; The injection quantity decreases as the engine speed increases due to the extremely small rail volume of the presenting system and flow rate of No. 2 injector are always lower than that of the other ones regardless of the speed under the dynamic operation condition. Furthermore the existing system does not meet the required fuel quantity for the normal engine operation over 3000 RPM. On the other hands, the large rail volume systems ease and/or eliminate the difference of injection quantity between the injectors according to the speed variation, however, these systems decrease injection flow rate and still cannot supply sufficient fuel. Finally, suitable combination of the higher rail pressure and the larger rail volume might be a solution about these problems.

A Study on the Effects of Fuel Rail Pressure and Engine Speed on Gas Fuel System (연료레일 압력과 엔진 속도가 가스연료 시스템에 미치는 영향에 관한 연구)

  • Kwak, Youn-Ki
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.5
    • /
    • pp.579-585
    • /
    • 2018
  • This study is to figure out the fuel injection characteristics according to the injection pressure and engine speed in the fuel supply system for gas fuel. The fuel rail pressure was from 1.5 to 6.0 bar by 1.5 bar increment and engine speed was set 1,000 ~ 6,000 RPM at interval of 1000 RPM. Considering the real engine operation, the injection pulse width was set 2.5ms, 5.0ms, and 13.0ms which correspond low, mid and high load condition respectively. In conclusion, in case of 100cc fuel rail, 4.5 bar of injection pressure showed best performance and the minimum required injection quantity 53cc which guarantees engine output can be obtained in each 1000~ 6000 rpm engine speed.

A Study on the Simulation of the Fuel Injection System in a Large Low-speed marine Diesel Engine (박용 대형 저속 디젤기관 연료분사계통의 시뮬레이션에 관한 연구)

  • 이창식
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.36-44
    • /
    • 2000
  • In his study the simulation was carried out by simplifing and modeling dividing into fuel injectioin pump high pressure pipe and fuel injection valve in the fuel injection system of a low speed marine diesel engine. A computer simulation model was developed using the method of characteristics to analyze the unsteady flow in the fuel injection system considering cavitation and variation of fuel density and bulk modulus. Comparison was commenced between the calculated data and experimental data of pressure and injection quantity at the high pressure distributor in fuel injection system for the training ship "M/V hanara" the effects of the high pressure pipe length diameter plunger diameter nozzle openning pressure were also investigated by simulating results.g results.

  • PDF