• Title/Summary/Keyword: Injection molding analysis

Search Result 525, Processing Time 0.038 seconds

Injection Molding Analysis of Battery case considering the Insert Deformation (인서트 변형을 고려한 배터리 케이스 사출 성형 해석)

  • Ahn, Dong-Gyu;Kim, Dea-Won
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1107-1112
    • /
    • 2008
  • The objective of this paper is to investigate into the influence of the injection conditions on the insert deformation and the wall thickness of the injection part using the three-dimensional injection molding analysis. Full three-dimensional insert model was added to the injection molding analysis model to consider the effects of insert deformation during the injection molding process. In order to obtain the optimum injection molding condition with a minimum insert deformation, degree of experiments were utilized. From the results of the analyses, it was shown that the optimum injection condition is injection time of 1.6 sec, injection pressure of 30 MPa and packing time of 15 sec. In addition it was shown that the wall thickness is approached to target thickness when the core deformation is considered in the injection molding analysis.

  • PDF

The Effect of Impacted Fracture in Glass Fiber Orientation with Injection Molding & Structural Coupled Analysis (사출-구조 연성해석을 통한 Glass Fiber 배향성이 충격 파괴에 미치는 영향)

  • Kim, Woong;Kim, JongRyang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.1
    • /
    • pp.35-41
    • /
    • 2017
  • The use of engineering plastics in automotive components is increasing with the trend towards improving the car strength and reducing weight. Among the different choices of materials, engineering plastic emerged as the necessary material for achieving lower costs, reduced weight and improved production efficiency. To produce the automotive parts, it is important to predict defect and validation of injection molding prior to design. Injection molding analysis and structural analysis are widely applied as a part of the design process when developing automotive parts. Injection molding analysis, in particular, involves a highly complicated mechanism that requires deep knowledge of polymer properties as well as an analytic approach different from that used for a general isotropic material when the molded material is used as a structural material. This is because the parts made of polymer have pre-stress factors such as intrinsic deformation and residual stress. The most important factors for injection molded plastic products are injection molding condition and cavity design, taking into account ease of molding, mass production and application. Despite optimal injection molding conditions and cavity design, however, glass fiber orientation is critically linked to strength reduction. The application of injection molding and structural coupled analysis provides a low-cost solution for product molding and structural validation, all prior to the actual molding. The purpose of this study involves the validation, pre-study, and solution of defect in injection-molded polymer automotive parts using the simulation software for injection molding and structural coupled analysis. Finally, this thesis provides validation of an injection molding and structural coupled analytic mechanism that can demonstrate the effect of glass fiber orientation on mechanical strength. Design improvement ideas for the injection molded product of PPS (Poly Phenylene Sulfide)+40% glass fiber are also suggested.

Evaluation of Formability Dependent on the Location of Injection Gate of Vertical Machining Center ATC Tool Port Using Injection Molding Analysis (사출성형해석을 이용한 수직머시닝센터 ATC 툴 포트의 사출 게이트 위치에 따른 성형성 평가)

  • Lee, Yu-Wool;Park, Chul-Woo;Kim, Jin-Rok;Choi, Hyun-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.129-135
    • /
    • 2021
  • Injection molding is a manufacturing method of melting the polymer resin and injecting it into a mold to molding it into the desired form. Due to the short molding time and outstanding formability, complex products can be shaped with high precision and it is the most widely used polymer molding method. However, there may be areas that are not filled depending on the location of the injection gate where polymer resin is injected. Formability is determined by deformation and surface precision due to the impact of residual stress after molding. Hence, choosing the location of the injection gate is very important and molding analysis of injection molding is essential to reduce the cost of the mold. This study evaluated the injection formability based on the location of the injection gate of the vertical machining center ATC tool port using injection molding analysis and the results were compared and analyzed. Injection molding analysis was conducted on filling, packing, and deformation according to the location of the gate of the ATC tool port. From each injection gate location, filling time, pressure, and maximum deformation were compared. At gate 2, conditions of molding time and the location of the gate were far superior in production and quality. Gate 2 produced the smallest deformation of 0.779mm with the best quality.

Linear Structural Analysis of Standard Plastic Tensile Specimen with Residual Stress Induced by Injection Molding (사출성형과정의 잔류응력을 고려한 표준인장시편의 선형구조해석)

  • Lee D.M.;Han B.K.;Lee Sung-Hee
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.579-580
    • /
    • 2006
  • In this study, an injection mold of tensile test specimen was manufactured by international standard. Pressure and temperature in the cavity of the injection mold was measured by sensors. Simulation of injection molding process was performed with the same condition of experiment and linear structural tensile analysis was also performed with the initial condition of the residual stress induced by injection molding analysis. Normalized elastic coefficient of tensile test was compared with that of structural analysis. It was shown that the residual stress induced by injection molding has an effect on both the experiment of tensile test and linear structural analysis.

  • PDF

Linear Structural Analysis and Simple Tensile Test of Plastic Injection Molding Tensile Specimen (플라스틱 사출인장시편의 단순인장시험 및 선형구조해석)

  • Lee, D.M.;Han, B.K.;Lee, Sung-Hee
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.230-233
    • /
    • 2006
  • In this study, the effects of residual stress induced by plastic injection molding process on the tensile behavior of plastic tensile test specimen were investigated. To manufacture plastic tensile test specimens, an injection mold based on the international standard system was designed and made. Cavity pressure and temperature sensors were installed inside of the presented mold to monitor pressure and temperature values during the cycle of injection molding. Injection molding simulation was performed with the same condition of experiment and linear structural tensile analysis was also performed with the initial condition of the residual stress. It was shown that the residual stress induced by injection molding has an effect on the experiment of tensile test and linear structural tensile simulation.

  • PDF

Structural Analysis in Conjunction with Injection Molding Analysis for Electrical Power Plug (전자제품용 전원 플러그의 사출-구조 연계해석)

  • Park, H.P.;Choi, K.I.;Lee, Y.J.;Rhee, B.O.;Cha, B.S.;Hong, S.K.;Koo, B.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.271-274
    • /
    • 2007
  • Housing and insulation of electrical connectors are made of plastic resin by injection molding process. The metallic inner tube is easily deformed by high pressure during the injection process. In order to prevent deformation of the inner tube, it is desirable to simulate it by structural CAE analysis. However, it takes a long time to calculate the stress- of the part by commercially available injection molding CAE software with sufficient accuracy. In this study, structural analysis in conjunction with injection molding analysis is proposed to improve accuracy of the structural analysis. Pressure distribution on the inner tube is predicted by the injection molding CAE analysis, and then mapped onto the mesh of structural analysis by a mapping algorithm developed in this study. As a result reliable result is obtained in shorter time than the conventional method. The predicted deformation of the inner tube is compared with the actual part after experiment.

  • PDF

Analysis of the Physical Quantity Variation in the Cavity and the Quality of the Molded Product According to the Injection Speed in Injection Molding

  • Kwon, Soon Yong;Cho, Jung Hwan;Roh, Hyung Jin;Cho, Sung Hwan;Lee, Yoo Jin;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • v.52 no.4
    • /
    • pp.317-325
    • /
    • 2017
  • Molding conditions can be described as factors that determine the quality of a product obtained from injection molding. Many studies have been performed on the injection molding pressure, injection temperature, packing pressure and other molding conditions related to part quality. However, the most accessible factor among the adjustable molding conditions during actual injection is the injection speed. In this study, we simulated the variation of the physical quantity according to injection speed and performed experiments to understand the effect of injection speed on the actual product. A CAE analysis program (Moldflow) was used to simulate and analyze the results using PC and PBT for two models. In order to compare these results with the experimental results, an actual injection molding was performed for each injection speed, and the correlation between simulation and injection molding, especially for the shrinkage of the molded article, was discussed.

A Study on the Deflection of Large Mold for Injection Molding (대형 사출금형의 성형 시 발생하는 금형 휨에 관한 연구)

  • Hwang, Si-Hyun;Kim, Chul-Gyu;Shim, Soo-Kil;Jeong, Yeong-Deug
    • Design & Manufacturing
    • /
    • v.8 no.1
    • /
    • pp.1-4
    • /
    • 2014
  • Large injection molds commonly have molding defects such as flashes and variation of product thickness. In this study, we conducted injection molding CAE analysis to find out the cavity pressure and structural analysis to find out mold deflection as input load conditions injection pressure obtained from injection molding analysis. As the results from CAE analysis, we found which element is the most effective on the mold deflection and we suggested a mold design to minimize the mold deflection.

  • PDF

A Study on the Deflection of Large Mold for Injection Molding (대형 사출금형의 성형시 발생하는 금형 휨에 관한 연구)

  • Hwang, Si-Hyun;Kim, Chul-Gyu;Shim, Soo-Kil;Jeong, Yeong-Deug
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.99-102
    • /
    • 2008
  • Large injection molds commonly have molding defects such as flashes and variation of product thickness. In this study, we conducted injection molding CAE analysis to find out the cavity pressure and structural analysis to find out mold deflection as input load conditions injection pressure obtained from injection molding analysis. As the results from CAE analysis, we found which element is the most effective on the mold deflection and we suggested a mold design to minimize the mold deflection.

  • PDF

Determination of Molding Conditions of Double-Shot Injection Mold for the Computer Mouse via Three-Dimensional Injection Molding Analysis (3 차원 사출성형 해석을 통한 컴퓨터 마우스 제작용 이중사출성형 금형의 공정조건 결정)

  • Ahn, Dong-Gyu;Park, Min-Woo;Park, Jeong-Woo;Kim, Hyung-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1619-1625
    • /
    • 2011
  • The objective of this study determine the molding conditions of a double-shot injection mold for fabricating a computer mouse using different materials, by performing three-dimensional injection molding analysis. In order to select the optical injection molding conditions, the effects of the injection time, the maximum injection pressure, the effect of packing time on the injection molding characteristics, and the product qualities were quantitatively examined. From the results of the injection molding analysis, the optimal injection molding conditions of the double-shot injection mold, which leads the molded product to the minimized shrinkage and deflection, were estimated. The results of the injection molding experiments, showed that an appropriate computer mouse can be fabricated using different materials when the identified optimal injection molding conditions are adopted.