• Title/Summary/Keyword: Inlet Guide Vane

Search Result 84, Processing Time 0.028 seconds

Effects of an Inlet Guide Vane on the Flowrate Distribution Characteristics of the Nozzle Exit in a Defrost Duct System (성에제거 덕트 입구 가이드베인 형상이 노즐출구 유량분포특성에 미치는 영향)

  • Kim, Duck-Jin;Lee, Jee-Keun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.88-96
    • /
    • 2008
  • Effects of the duct inlet guide vane on the flowrate distribution characteristics of the defroster nozzle exit in a defrost duct system were investigated experimentally to design the optimum heating, ventilation and air conditioning (HVAC) system applied in an automotive compartment. A 3-dimensional hot-wire anemometer system was used to measure the velocity field in the vicinity of the defroster nozzle jet flow and the velocity distributions near the windshield interior surface. At first, two cases of with- and without-duct inlet guide vanes were considered as the test condition, and then three cases of the duct inlet guide vane were tested to determine the optimum guide vane shape and their positions. The arrangement of the duct inlet guide vanes has an effect on the improved flowrate distribution at the defroster nozzle exit and near the windshield interior surface. However, the application of the lots of guide vane to control the flow direction leads to increase the flow resistance, resulting in the decreased flowrate issuing from the defroster nozzle. The shape of the duct inlet guide vane affects not only the flowrate distribution between the driver side and the assistant driver side but also the reduction of the flow resistance in the defrost duct system.

Experimental Study on the Effect of Inlet Guide Vane of Instabilities of a Centrifugal Compressor (입구 안내익 영향으로 인한 원심 압축기 불안정성 연구)

  • Lim, Byeung-Jun;Cha, Bong-Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.3 s.24
    • /
    • pp.23-31
    • /
    • 2004
  • An experimental study on the performance and instability development characteristics of a centrifugal compressor equipped with an adjustable inlet guide vane has been performed with varying guide vane angles. The test was conducted at the design speed of 20,800 rpm for 6 guide vane angles : $-30^{\circ},\;-20^{\circ},\;10^{\circ},\;0^{\circ},\;10^{\circ},\;20^{\circ},\;30^{\circ}$. Unsteady pressures were measured using high-frequency pressure transducers at the inducer to investigate the instability phenomena such as rotating stall and surge inside the compressor. From the unsteady measurements, it is found that the transient process from rotating stall to surge was mainly affected by inlet guide vane angles. The results of the present study can be applied to the instability control of the centrifugal compressors using a adjustable inlet guide vane.

The Numerical Simulation of Unsteady Flow in a Mixed flow Pump Guide Vane

  • Li, Yi-Bin;Li, Ren-Nian;Wang, Xiu-Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.4
    • /
    • pp.200-205
    • /
    • 2013
  • In order to investigate the characteristics of unsteady flow in a mixed flow pump guide vane under the small flow conditions, several indicator points in a mixed flow pump guide vane was set, the three-dimensional unsteady turbulence numerical value of the mixed flow pump which is in the whole flow field will be calculated by means of the large eddy simulation (LES), sub-grid scale model and sliding mesh technology. The experimental results suggest that the large eddy simulation can estimate the positive slope characteristic of head & capacity curve. And the calculation results show that the pressure fluctuation coefficients of the middle section in guide vane inlet will decrease firstly and then increase. In guide vane outlet, the pressure fluctuation coefficients of section will be approximately axially symmetrical distribution. The pressure fluctuation minimum of section in guide vane inlet is above the middle location of the guide vane suction surface, and the pressure fluctuation minimum of section in which located the middle and outlet of guide vane. When it is under the small flow operating condition, the eddy scale of guide vane is larger, and the pressure fluctuation of the channel in guide vane being cyclical fluctuations obviously which leads to the area of eddy expanding to the whole channel from the suction side. The middle of the guide vane suction surface of the minimum amplitude pressure fluctuation to which the vortex core of eddy scale whose direction of fluid's rotation is the same to impeller in the guide vane adhere.

A Study on Flow Characteristics of Vertical Multi-stage Centrifugal Pump by CFD (CFD에 의한 입형 다단 원심펌프 유동특성에 관한 연구)

  • MO, Jang-Oh;NAM, Koo-Man;KIM, You-taek;LEE, Young-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.402-407
    • /
    • 2002
  • A commercial CFD code is applied to analyze the 3-D viscous flow field within vertical multi-stage centrifugal pimp including impeller with 6 blades and guide vane with 11 blades and is performed by changing flow rate from 10 to $26\;m^3/h$ at the constant 3500rpm. The purpose of this 3-D numerical simulation is to confirm how much the effect of blade inlet angle of guide vane has an influence on the performance of vertical multi-stage centrifugal pimp. these results performed by $20^{\circ},\;30^{\circ}$ inlet angle of guide vane are compared with grundfos performance data. The vertical multi-stage pump consist of the impeller, guide vane, and cylinder. The characteristics such as total pressure coefficient total heat shaft horse power, power efficiency, discharge coefficient are represented according to flow rate changing.

  • PDF

An Experimental Study on the Aerodynamic Performance of High-efficient, Small-scale, Vertical-axis Wind Turbine (고효율 소형 수직형 풍력터빈의 공력성능에 관한 실험적 연구)

  • Park, Jun-Yong;Lee, Myeong-Jae;Lee, Seung-Jin;Lee, Seung-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.8
    • /
    • pp.580-588
    • /
    • 2009
  • This paper summarizes the experimentally-measured performance of small-scale, vertical-axis wind turbine for the purpose of improving the aerodynamic efficiency and its controllability. The turbine is designed to have a Savonius-Type rotor with an inlet guide-vane and an side guide-vane so that it achieves a higher efficiency than any lift- or drag-based turbines. The main design factors for this high-efficient, vertical wind turbine are the number of blades (Z), and the aspect ratio of Height/Diameter (H/D) among many. The basic model has the diameter of 580mm, the height of 464mm, and the blade number of 10. The maximum power coefficient of 0.50 was experimentally measured for the above-mentioned specifications. The inlet-guide vane ensures the maximum efficiency when the angle of attack to the rotor blade lies between $15^{\circ}$ and $20^{\circ}$. This experimental results for the vertical-axis wind turbine can be applied to the preliminary design of turbine output curve based on the wind characteristics at the proposed site by controlling its aerodynamic performance given as a priori.

Development of 2.5 kW Class Propeller Type Micro Hydraulic Turbine (2.5 kW 급 프로펠러형 마이크로 수차 개발)

  • MA, SANG-BUM;KIM, SUNG;CHOI, YOUNG-SEOK;CHA, DONG-AN;KIM, JIN-HYUK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.3
    • /
    • pp.314-321
    • /
    • 2020
  • In this work, a preliminary design of an inlet guide vane and runner for developing a 2.5 kW hydraulic turbine was conducted by using computational fluid dynamic analysis. Three-dimensional Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model were used to analyze the fluid flow in the hydraulic turbine. The hexahedral grid system was used to construct computational domain, and the grid dependency test was performed to obtain the optimal grid system. Velocity triangle diagram considering the flow angles of the inlet guide vane and runner was analyzed to obtain a basic geometry of the inlet guide vane and runner. Through modification of the preliminary design, the hydraulic performances of the turbine have improved under overall drop conditions. Especially, the efficiency and power of the turbine increased by 0.95% and 1.45%, respectively, compared to those of the reference model.

Studies on the improvement of driving gears quality at Inlet Guide Vane of aircraft auxiliary power unit (항공기 보조동력장치 입구안내익 구동기어의 품질개선에 관한 연구)

  • Park, Sungjae;Park, Sunwook;Suh, Jaekyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.6
    • /
    • pp.512-519
    • /
    • 2016
  • Auxiliary Power Unit of FA-50 which provides energy other than propulsion is an important element to maintain airworthiness on aircraft. Also Inlet Guide Vane of Auxiliary Power Unit is a device that supplies appropriate airflow into the Auxiliary Power Unit after adjusting influent airflow into the load compressor. This report, based on the problems occurred the driving gears of Inlet Guide Vane, deals with cause of occurrence, troubleshooting, design improvement and result of test flight verification for FA-50 aircraft Auxiliary Power Unit lifespan.

NUMERICAL OPTIMIZATION OF TEMPERATURE DISTRIBUTION IN HRSG SYSTEM USING INLET GUIDE VANE (전치 가이드 베인 설치에 따른 열회수 보일러 입구 온도 최적화)

  • Lee, Soo-Yoon;Ahn, Joon;Shin, Seung-Won
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.148-154
    • /
    • 2008
  • Diverging channel from gas burner exit to the inlet section of Heat Recovery Steam Generator (HRSG) has been re-designed for 1 MW system. To improve the uniformity in velocity and temperature distribution of existing design(Case A and B) of 300 kW HRSG system, two additional test geometries have been chosen for the numerical simulation. At first, gas burner exit section has been centered to the inlet section of boiler(Case C) and uniformity has been improved considerably. Secondly, the diverging channel length can be further reduced for compact geometry with new guide vane design (Case D and E). Proposed design shows overall improvement in uniformity in velocity and temperature distribution compared to existing one.

  • PDF

NUMERICAL OPTIMIZATION OF TEMPERATURE DISTRIBUTION IN HRSG SYSTEM USING INLET GUIDE VANE (전치 가이드 베인 설치에 따른 열회수 보일러 입구 온도 최적화)

  • Lee, Soo-Yoon;Ahn, Joon;Shin, Seung-Won
    • Journal of computational fluids engineering
    • /
    • v.14 no.3
    • /
    • pp.1-8
    • /
    • 2009
  • Diverging channel from gas engine exit to the inlet section of Heat Recovery Steam Generator (HRSG) has been re-designed for 1 MW system. To improve the uniformity in velocity and temperature distribution of existing design(Case A and B), two additional test geometries have been chosen for the numerical simulation. At first, gas burner exit section has been centered to the inlet section of the boiler(Case C) and uniformity in velocity and temperature distribution has been improved considerably. Secondly, the diverging channel length can be further reduced to compact geometry with new guide vane design (Case D and E). Proposed design shows overall improvement in uniformity in velocity and temperature distribution compared to existing one.

Numerical Simulation of Duct Flow about Shape and Arrangement of Inlet Guide Vane to Increase the Temperature Uniformity (전치 가이드 베인 배치 및 형상에 따른 보일러 입구 온도분포의 수치해석 연구)

  • Lee, Su-Yun;Shin, Seung-Won
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1172-1177
    • /
    • 2008
  • Diverging channel from gas burner exit to the inlet section of Heat Recovery Steam Generator (HRSG) has been re-designed for 1 MW steam supply and power generation system. Three different test geometries have been chosen for the numerical simulation. The existing design for 300 kW HRSG system (CASE B) has been improved by geometry and position changes of inlet guide vanes along with gas velocity entrance angle at the diverging channel inlet (CASE C). Both cases has been compared with the case where hot combustion gas is directly injected without any guide vanes (CASE A). Improved design shows overall uniform velocity and temperature distribution compared to existing design.

  • PDF