• Title/Summary/Keyword: Integer-N

Search Result 466, Processing Time 0.026 seconds

ABS ALGORITHM FOR SOLVING A CLASS OF LINEAR DIOPHANTINE INEQUALITIES AND INTEGER LP PROBLEMS

  • Gao, Cheng-Zhi;Dong, Yu-Lin
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.349-353
    • /
    • 2008
  • Using the recently developed ABS algorithm for solving linear Diophantine equations we introduce an algorithm for solving a system of m linear integer inequalities in n variables, m $\leq$ n, with full rank coefficient matrix. We apply this result to solve linear integer programming problems with m $\leq$ n inequalities.

  • PDF

GENERALIZED CULLEN NUMBERS WITH THE LEHMER PROPERTY

  • Kim, Dae-June;Oh, Byeong-Kweon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1981-1988
    • /
    • 2013
  • We say a positive integer n satisfies the Lehmer property if ${\phi}(n)$ divides n - 1, where ${\phi}(n)$ is the Euler's totient function. Clearly, every prime satisfies the Lehmer property. No composite integer satisfying the Lehmer property is known. In this article, we show that every composite integer of the form $D_{p,n}=np^n+1$, for a prime p and a positive integer n, or of the form ${\alpha}2^{\beta}+1$ for ${\alpha}{\leq}{\beta}$ does not satisfy the Lehmer property.

ON n-ABSORBING IDEALS AND THE n-KRULL DIMENSION OF A COMMUTATIVE RING

  • Moghimi, Hosein Fazaeli;Naghani, Sadegh Rahimi
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1225-1236
    • /
    • 2016
  • Let R be a commutative ring with $1{\neq}0$ and n a positive integer. In this article, we introduce the n-Krull dimension of R, denoted $dim_n\;R$, which is the supremum of the lengths of chains of n-absorbing ideals of R. We study the n-Krull dimension in several classes of commutative rings. For example, the n-Krull dimension of an Artinian ring is finite for every positive integer n. In particular, if R is an Artinian ring with k maximal ideals and l(R) is the length of a composition series for R, then $dim_n\;R=l(R)-k$ for some positive integer n. It is proved that a Noetherian domain R is a Dedekind domain if and only if $dim_n\;R=n$ for every positive integer n if and only if $dim_2\;R=2$. It is shown that Krull's (Generalized) Principal Ideal Theorem does not hold in general when prime ideals are replaced by n-absorbing ideals for some n > 1.

FURTHER RESULTS ON BIASES IN INTEGER PARTITIONS

  • Chern, Shane
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.1
    • /
    • pp.111-117
    • /
    • 2022
  • Let pa,b,m(n) be the number of integer partitions of n with more parts congruent to a modulo m than parts congruent to b modulo m. We prove that pa,b,m(n) ≥ pb,a,m(n) whenever 1 ≤ a < b ≤ m. We also propose some conjectures concerning series with nonnegative coefficients in their expansions.

THE NUMBERS THAT CAN BE REPRESENTED BY A SPECIAL CUBIC POLYNOMIAL

  • Park, Doo-Sung;Bang, Seung-Jin;Choi, Jung-Oh
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.167-171
    • /
    • 2010
  • We will show that if d is a cubefree integer and n is an integer, then with some suitable conditions, there are no primes p and a positive integer m such that d is a cubic residue (mod p), $3\;{\nmid}\;m$, p || n if and only if there are integers x, y, z such that $$x^3\;+\;dy^3\;+\;d^2z^3\;-\;3dxyz\;=\;n$$.

ON THE DIOPHANTINE EQUATION (5pn2 - 1)x + (p(p - 5)n2 + 1)y = (pn)z

  • Kizildere, Elif;Soydan, Gokhan
    • Honam Mathematical Journal
    • /
    • v.42 no.1
    • /
    • pp.139-150
    • /
    • 2020
  • Let p be a prime number with p > 3, p ≡ 3 (mod 4) and let n be a positive integer. In this paper, we prove that the Diophantine equation (5pn2 - 1)x + (p(p - 5)n2 + 1)y = (pn)z has only the positive integer solution (x, y, z) = (1, 1, 2) where pn ≡ ±1 (mod 5). As an another result, we show that the Diophantine equation (35n2 - 1)x + (14n2 + 1)y = (7n)z has only the positive integer solution (x, y, z) = (1, 1, 2) where n ≡ ±3 (mod 5) or 5 | n. On the proofs, we use the properties of Jacobi symbol and Baker's method.

The n+1 Integer Factorization Algorithm (n+1 소인수분해 알고리즘)

  • Choi, Myeong-Bok;Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.2
    • /
    • pp.107-112
    • /
    • 2011
  • It is very difficult to factorize composite number, $n=pq$ to integer factorization, p and q that is almost similar length of digits. Integer factorization algorithms, for the most part, find ($a,b$) that is congruence of squares ($a^2{\equiv}b^2$ (mod $n$)) with using factoring(factor base, B) and get the result, $p=GCD(a-b,n)$, $q=GCD(a+b,n)$ with taking the greatest common divisor of Euclid based on the formula $a^2-b^2=(a-b)(a+b)$. The efficiency of these algorithms hangs on finding ($a,b$) and deciding factor base, B. This paper proposes a efficient algorithm. The proposed algorithm extracts B from integer factorization with 3 digits prime numbers of $n+1$ and decides f, the combination of B. And then it obtains $x$(this is, $a=fxy$, $\sqrt{n}$ < $a$ < $\sqrt{2n}$) from integer factorization of $n-2$ and gets $y=\frac{a}{fx}$, $y_1$={1,3,7,9}. Our algorithm is much more effective in comparison with the conventional Fermat algorithm that sequentially finds $\sqrt{n}$ < $a$.

DIVISORS OF THE PRODUCTS OF CONSECUTIVE INTEGERS

  • Koh, Young-Mee;Ree, Sang-Wook
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.3
    • /
    • pp.541-550
    • /
    • 2002
  • In this Paper, We look at 3 Simple function L assigning to an integer n the smallest positive integer n such that any product of n consecutive numbers is divisible by n. Investigated are the interesting properties of the function. The function L(n) is completely determined by L(p$\^$k/), where p$\^$k/ is a factor of n, and satisfies L(m$.$n) $\leq$ L(m)+L(n), where the equality holds for infinitely many cases.

Factor Rank and Its Preservers of Integer Matrices

  • Song, Seok-Zun;Kang, Kyung-Tae
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.4
    • /
    • pp.581-589
    • /
    • 2006
  • We characterize the linear operators which preserve the factor rank of integer matrices. That is, if $\mathcal{M}$ is the set of all $m{\times}n$ matrices with entries in the integers and min($m,n$) > 1, then a linear operator T on $\mathcal{M}$ preserves the factor rank of all matrices in $\mathcal{M}$ if and only if T has the form either T(X) = UXV for all $X{\in}\mathcal{M}$, or $m=n$ and T(X)=$UX^tV$ for all $X{\in}\mathcal{M}$, where U and V are suitable nonsingular integer matrices. Other characterizations of factor rank-preservers of integer matrices are also given.

  • PDF