• Title/Summary/Keyword: Integral output feedback

Search Result 56, Processing Time 0.027 seconds

A New Robust Discrete Integral Static Output Feedback Variable Structure Controller with Disturbance Observer and Integral Dynamic-Type Sliding Surface for Uncertain Discrete Systems (불확실 이산 시스템을 위한 외란관측기와 적분 동특성형 슬라이딩 면을 갖는 새로운 둔감한 이산 적분 정적 출력 궤환 가변구조제어기)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1289-1294
    • /
    • 2010
  • In this paper, a new discrete integral static output feedback variable structure controller based on the a new integral dynamic-type sliding surface and output feedback discrete version of the disturbance observer is suggested for the control of uncertain linear systems. The reaching phase is completely removed by introducing a new proposed integral dynamic-type sliding surface. The output feedback discrete version of disturbance observer is presented for effective compensation of uncertainties and disturbance. A corresponding control with disturbance compensation is selected to guarantee the quasi sliding mode on the predetermined integral dynamic-type sliding surface for guaranteeing the designed output in the integral dynamic-type sliding surface from any initial condition for all the parameter variations and disturbances. Using discrete Lyapunov function, the closed loop stability and the existence condition of the quasi sliding mode is proved. Finally, an illustrative example is presented to show the effectiveness of the algorithm.

Output Feedback Stabilization using Integral Sliding Mode Control (적분 슬라이딩 모드 제어기를 이용한 출력 궤환 안정화)

  • Oh, Seung-Rohk
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.3
    • /
    • pp.142-147
    • /
    • 2003
  • We consider a single-input-single-output nonlinear system which can be represented in a normal form. The nonlinear system has a modeling uncertainties including the input coefficient uncertainty. A high-gain observer is used to estimate the states variables to reject a modeling uncertainty. A globally bounded output feedback integral sliding mode control is proposed to stabilize the closed loop system. The proposed integral sliding mode control can asymptotically stabilize the closed loop system in the presence of input coefficient uncertainty.

LMI-based Design of Output Feedback Integral Sliding Mode Controllers (출력 궤환 적분 슬라이딩 모드 제어기의 LMI 기반 설계)

  • Choi, Han-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.138-141
    • /
    • 2011
  • This paper presents an LMI-based method to design an output feedback integral sliding mode controller for a class of uncertain systems. Using LMIs we derive an existence condition of a sliding surface. And we give a switching feedback control law. Finally, we give a numerical design example in order to show the effectiveness of the proposed method.

A New Robust Output Feedback Variable Structure Controller for Uncertain More Affine Nonlinear Systems with Mismatched Uncertainties and Matched Disturbance

  • Lee, Jung-Hoon
    • Journal of IKEEE
    • /
    • v.18 no.2
    • /
    • pp.206-213
    • /
    • 2014
  • In this note, a new robust nonlinear output feedback variable structure controller is first systematically and generally designed for the output control of more affine uncertain nonlinear systems with mismatched uncertainties and matched disturbance. A transformed integral output feedback sliding surface with a most simple form is applied in order to remove the reaching phase problems. The closed loop exponential stability and the existence condition of the sliding mode on the integral output feedback sliding surface is investigated with a corresponding output feedback control input in Theorem 1. For practical application the continuous implementation of the control input is made by the modified saturation function. The effectiveness of the proposed controller is verified through a design example and simulation study.

DESIGN OF A DYNAMIC OUTPUT FEEDBACK CONTROLLER FOR POWER SUSTEM GENERATORS

  • Danjyo, Mitsuaki;Tanaka, Yukihiko;Kominato, Yoshihito;Sagara, Setsuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.871-876
    • /
    • 1989
  • We propose a new algorithm to obtain the output feedback controller, which contains one dynamic element, for power system generators. The performance criterion of this controller is the integral of quadratic form of output differences between reference model and controlled system. with this criterion, we can easily compute the output feedback gains using Astrom's algorithm for the integral calculation of quadratic form.

  • PDF

Design of an output-feedback controller for power system generator

  • Danjyo, Mitsuaki;Tanaka, Yukihiko;Sagara, Setsuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.837-842
    • /
    • 1988
  • We propose a new algorithm to obtain the output feedback controller for power system generators. The performance criterion of this controller is the integral of quadratic form of output differences between reference model and controlled system. With this criterion, we can easily compute the output feedback gains using Astrom's algorithm for the integral calculation of quadratic form. Simulations on a one machine infinite bus system shows the effectiveness of this approach.

  • PDF

A Static Output Feedback Integral Variable Structure Controller for Uncertain Systems with Unmatched System Matrix Uncertainty (부정합 시스템 행렬 불확실성을 갖는 시스템을 위한 정적 출력 궤환 적분 가변 구조 제어기)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.411-416
    • /
    • 2010
  • In this paper, an integral variable structure static output feedback controller with an integral-augmented sliding surface is designed for the improved robust control of a uncertain system under unmatched system uncertainty and matched input matrix uncertainty and disturbance satisfying some conditions. To effectively remove the reaching phase problems, an output dependent integral augmented sliding surface is proposed. Its equivalent control and ideal sliding mode dynamics are obtained. The previous some limitations is overcome in this systematic design. A stabilizing control with the closed loop exponential stability is designed for all unmatched system matrix uncertainties and proved together with the existence condition of the sliding mode on S=0. To show the usefulness of the algorithm, a design example and computer simulations are presented.

Application of Fuzzy Integral Control for Output Regulation of Asymmetric Half-Bridge DC/DC Converter with Current Doubler Rectifier

  • Chung, Gyo-Bum;Kwack, Sun-Geun
    • Journal of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.238-245
    • /
    • 2007
  • This paper considers the problem of regulating the output voltage of a current doubler rectified asymmetric half-bridge (CDRAHB) DC/DC converter via fuzzy integral control. First, we model the dynamic characteristics of the CDRAHB converter with the state-space averaging method, and after introducing an additional integral state of the output regulation error, we obtain the Takagi-Sugeno (TS) fuzzy model for the augmented system. Second, the concept of parallel distributed compensation is applied to the design of the TS fuzzy integral controller, in which the state feedback gains are obtained by solving the linear matrix inequalities (LMIs). Finally, numerical simulations of the considered design method are compared to those of the conventional method, in which a compensated error amplifier is designed for the stability of the feedback control loop.

Optimal Output P and PI Feedback for Discrete Time Systems (리산시스템을 위한 최적출력 P&PI궤환)

  • 신현철;변증남
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.17 no.6
    • /
    • pp.38-43
    • /
    • 1980
  • For linear discrete-time time-invariant multi-input mufti-output systems, a necessary condition which an optimal output Proportional feedback gains must satisfr is deiived. Quadratic performance index is used. The result is extended to the desi01 problem for determining optimal output proportional plus integral feedback gains. For illustration, an example problem is solved and discussed.

  • PDF

A Study on Integral Equalities Related to a Laplace Transformable Function and its Applications

  • Kwon, Byung-Moon;Ryu, Hee-Seob;Kwon, Oh-Kyu
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.76-82
    • /
    • 2003
  • This paper establishes some integral equalities formulated by zeros located in the convergence region of a Laplace transformable function. Using the definition of the Laplace transform, it shows that Laplace transformable functions have to satisfy the integral equalities in the time-domain, which can be applied to the understanding of the fundamental limitations on the control system represented by the transfer function. In the unity-feedback control scheme, another integral equality is derived on the output response of the system with open-loop poles located in the convergence region of the output function. From these integral equalities, two sufficient conditions related to undershoot and overshoot phenomena in the step response, respectively, are investigated.