• Title/Summary/Keyword: Integrated Commissioning

Search Result 16, Processing Time 0.021 seconds

A Study on Building Integrated Design and Commissioning of GHP System (지열히트펌프 시스템의 건물통합설계 및 커미셔닝에 관한 연구)

  • Kim, Ji-Young;Jang, Jea-Chul;Kang, Eun-Chul;Chang, Ki-Chang;Lee, Euy-Joon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.169.1-169.1
    • /
    • 2010
  • Geothermal heat pump(GHP)system has been extensively disseminated due to the recent increasing demand over new and renewable energy. However, the economics and system reliability has been key issues and barriers to insure a better system performance as designed originally. The building integrated designs of geothermal heat pump system are test and optimize GHP system by evaluating its performance in virtual reality. System design is an iterative process that will help optimize the cost efficiency of the system. One of the primary goals is to minimize the energy imbalance between the amount of energy extracted from the ground and the energy reject to it. This will reduce the land area required to install the GHX, reduce the cost of installing it and ensure the long-term efficiency of the system. Commissioning is the process of ensuring that are designed, installed, functionally tested, and capable of being operated and maintained to performance in conformity with design intent. In this paper, Study on introduction of Initial commissioning method of Geothermal Heat Pump(GHP) system using ISO performance data has been introduced. Also KIER GHP Simulator is used to simulate actual heat pimp operating condition and test commissioning method. Result should that the experiment data base could verify the applicability of the commissioning method, and also were able to suggest a better ways to GHP commissioning.

  • PDF

Integrated Management of Sewage Facilities in Upstream Watershed of Dam(II) - Focusing on Organization, Human Resources Saving Effect and Economic Feasibility - (댐상류하수도시설의 통합운영관리방안에 관한 연구(II) - 통합운영관리 조직구성, 인력절감효과 및 경제성 검토를 중심으로 -)

  • Ahn, Choong-Hee;Lee, Kwan-Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.1
    • /
    • pp.51-61
    • /
    • 2011
  • A project constructing sewerage facilities in 9 upstream areas of 7 multi-purpose dams will have been completed by 2011. After all constructing and retrofitting of the new and the existing sewerage facilities, integrated management system with operation and control functions for the each levels of facilities will also be utilized. In this study, we studied how to compose the organization taking responsibility of the integrated management system and analysed human resources saving effect against conventional method of individual management of each sewerage facility. As a result, a method estimating the human resources in employing the integrated management among several sewerage facilities at upstream areas of dams were presented and some 23% of human resources could be saved by integrated management. Commissioning to a specialized public institute showed the highest B/C ratio of 4.5 among commissioning to local public corporations, commissioning to private corporations, and role-sharing partnership, etc.

A Railway Safety Proposal with Full System Commissioning (철도시스템의 종합시험운행을 통한 철도안전 확보방안)

  • Kim, Young-Woo;Lee, Hi-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.1 s.38
    • /
    • pp.34-38
    • /
    • 2007
  • Rail network authority have to do the safety ensuring activities including the maintenance of railway facilities, integrated performance verification between the facilities and related lolling stock and safety inspections, etc. When constructing the new lines or upgrading the conventional lines, full system commissioning should be done before the revenue service with railway operator. To develop the optimal full system commissioning model, the status of domestic and foreign railway facilities and railway accidents are analysed and the problems of the safety management are derived. As one of countermeasures for the problems, the procedures and criteria for the full system commissioning are developed.

Who Should Control the Integrated Management System for Sewerage Facilities in the Upper Reaches of Multi-Purpose Dams in Korea?

  • Park, Kyoo-Hong;Kim, Hyung-Joon
    • Environmental Engineering Research
    • /
    • v.15 no.2
    • /
    • pp.99-103
    • /
    • 2010
  • Integrated management systems (IMS) that control entire sewerage facilities in the upper reaches of multi-purpose dams are being constructed for their efficient operation and management. However, because the IMS installed in a watershed belong to several local government bodies, significant conflict would be expected between stakeholders in the process of deciding who should control the IMS after completion of the construction that was initially implemented under the support of central government. The objective of this study was to suggest a decision making to determine who should control the IMS for sewerage facilities in the upper reaches of multipurpose dams in Korea, using the analytic hierarchy process (AHP). Three alternatives were selected to determine who should control the IMS for sewerage facilities: commissioning to public corporations, commissioning to private corporations, and a role-sharing partnership. In using the AHP technique, the emphasis was on comparing public interests, economics, efficiency, sustainability, specialty, grievance mediation and receptiveness. As a result, building a role-sharing partnership received the highest score. Commissioning to a special institute was also suggested as an alternative as this showed a score similar to that of building a role-sharing partnership.

A Railway Safety Proposal with Full System Commissioning (철도시스템의 종합시험운행을 통한 철도안전 확보방안)

  • Kim, Jeong-Joo;Lee, Hi-Sung;Moon, Dae-Seop
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.522-527
    • /
    • 2005
  • Rail network authority have to do the safety ensuring activities including the maintenance of railway facility, integrated performance verification between the facilities and related rolling stock and safety inspections, etc. When constructing the new lines or revising the conventional lines, full system commissioning should be done before the revenue service with railway operator. To develop the optimal full system commissioning model, the status of domestic and foreign railway facility and railway accidents are analysed and the problems of the safety management are derived. As one of countermeasures for the problems, the procedures and criteria for the full system commissioning are developed.

  • PDF

A Business Model for Offshore Integrated Drilling Commissioning in Korea and Related Economic Analysis (우리나라 해양시추설비 통합시운전 사업 모델의 개발 및 경제성 분석에 관한 연구)

  • Lee, Chang-Woo;Cheon, Young-Wook;Shin, Sang-Hoon;Shin, Yong-John
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.1
    • /
    • pp.102-110
    • /
    • 2019
  • The shipbuilding and offshore plant industry of Korea is important and leads Korea's economic growth, designated as the 1st to 4th export items in Korea in terms of export contribution over the period from 2011 to 2015. This study proposes ways to improve the national competitiveness of Korean shipyards in the global offshore drilling market by reviewing a business model for providing an integrated offshore drilling commissioning service in Korea. This commissioning service model, which was attempted in 2014, was reviewed, and a new proposed business model for overcoming the limitations of the previous model and activating further business was evaluated. As a result of an economic evaluation, it was found that a 150-meter water depth model is economically more effective. As the number of integrated commissions increased from 2 to 5 times per year, NPV, IRR and B/C ratios increased and the fee per use decreased. Therefore, for offshore drilling facilities constructed and delivered in Korea, it will be necessary to encourage integrated offshore commissioning.

CONSTRUCTION, ASSEMBLY AND COMMISSIONING OF KSTAR MAIN STRUCTURES

  • Yang, Hyung-Lyeol;Bak, Joo-Shik;Kim, Byung-Chul;Choi, Chang-Ho;Kim, Woong-Chae;Her, Nam-Il;Hong, Kwon-Hee;Kim, Geung-Hong;Kim, Hak-Kun;Sa, Jeong-Woo;Kim, Hong-Tack;Kim, Kyung-Min;Kim, Sang-Tae
    • Nuclear Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.439-450
    • /
    • 2008
  • The KSTAR device succeeded in first plasma generation on $13^{th}$ June of 2008 through comprehensive system test and commissioning. Among various kinds of the key factors that decisively affected the project, success in the construction and assembly of the major tokamak structure was most important one. Every engineering aspects of each structure were finally confirmed in the integrated commissioning period, and there were no severe troubles and failures prevented the KSTAR device from operating during the commissioning and the first plasma experiments. As a result, all of the experiences and technologies achieved through the KSTAR construction process are expected to be important fundamentals for future construction projects of superconducting fusion devices. This paper summarizes key engineering features of the major structures and of the machine assembly.

KO AC/DC Converter System Installation Status and Commissioning Plan at ITER Site (이터 초전도자석 전원공급장치 현장 설치현황 및 시운전 계획)

  • Song, Inho;Oh, Jong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.5
    • /
    • pp.397-401
    • /
    • 2022
  • The construction of the ITER tokamak machine is ongoing at a 77% process rate to achieve the first plasma in 2025. The 18 sets of power supply systems comprising 400 MVA thyristor AC/DC converters for the superconducting magnets supplied by Korea (KO) are being installed with other systems, such as PF converters (China), DC busbars (Russia), and cooling water systems (India), in two buildings (Europe). The system interfaces have been defined during the design stage, and the systems have been manufactured. However, during the on-site installation work, several installation and integration issues emerged due to the manufacturing tolerance and design mistakes. To continue the installation and testing, the engineers of each system resolved the interface issues, planned the commissioning, and integrated the test plan. This paper describes the on-site installation status and issues and the commissioning plan of KO AC/DC converters.

OVERVIEW OF KSTAR INTEGRATED CONTROL SYSTEM

  • Park, Mi-Kyung;Kim, Kuk-Hee;Lee, Tae-Gu;Kim, Myung-Kyu;Hong, Jae-Sic;Baek, Sul-Hee;Lee, Sang-Il;Park, Jin-Seop;Chu, Yong;Kim, Young-Ok;Hahn, Sang-Hee;Oh, Yeong-Kook;Bak, Joo-Shik
    • Nuclear Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.451-458
    • /
    • 2008
  • After more than 10 years construction, KSTAR (Korea Superconducting Tokamak Advanced Research) had finally completed its assembly in June 2007, and then achieved the goal of first-plasma in July 2008 through the four month's commissioning. KSTAR was constructed with fully superconducting magnets with material of $Nb_3Sn$ and NbTi, and their operation temperatures are maintained below 4.5K by the help of Helium Refrigerator System. During the first-plasma operation, plasmas of maximum current of 133kA and maximum pulse width of 865ms were obtained. The KSTAR Integrated Control System (KICS) has successfully fulfilled its missions of surveillance, device operation, machine protection interlock, and data acquisition and management. These and more were all KSTAR commissioning requirements. For reliable and safe operation of KSTAR, 17 local control systems were developed. Those systems must be integrated into the logically single control system, and operate regardless of their platforms and location installed. In order to meet these requirements, KICS was developed as a network-based distributed system and adopted a new framework, named as EPICS (Experimental Physics and Industrial Control System). Also, KICS has some features in KSTAR operation. It performs not only 24 hour continuous plant operation, but the shot-based real-time feedback control by exchanging the initiatives of operation between a central controller and a plasma control system in accordance with the operation sequence. For the diagnosis and analysis of plasma, 11 types of diagnostic system were implemented in KSTAR, and the acquired data from them were archived using MDSpius (Model Driven System), which is widely used in data management of fusion control systems. This paper will cover the design and implementation of the KSTAR integrated control system and the data management and visualization systems. Commissioning results will be introduced in brief.

COMMISSIONING RESULT OF THE KSTAR HELIUM REFRIGERATION SYSTEM

  • Park, Dong-Seong;Chang, Hyun-Sik;Joo, Jae-Joon;Moon, Kyung-Mo;Cho, Kwang-Woon;Kim, Yang-Soo;Bak, Joo-Shik;Cho, Myeon-Chul;Kwon, Il-Keun;Andrieu, Frederic;Beauvisage, Jerome;Desambrois, Stephane;Fauve, Eric
    • Nuclear Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.467-476
    • /
    • 2008
  • To keep the superconducting (SC) magnet coils of KSTAR at proper operating conditions, not only the coils but also other cold components, such as thermal shields (TS), magnet structures, SC bus-lines (BL), and current leads (CL) must be maintained at their respective cryogenic temperatures. A helium refrigeration system (RRS) with an exergetic equivalent cooling power of 9 kW at 4.5 K without liquid nitrogen ($LN_2$) pre-cooling has been manufactured and installed. The main components of the KST AR helium refrigeration system (HRS) can be classified into the warm compression system (WCS) and the cryogenic devices according to the operating temperature levels. The process helium is compressed from 1 bar to 22 bar passing through the WCS and is supplied to cryogenic devices. The main components of cryogenic devices are consist of cold box (C/B) and distribution box (D/B). The C/B cool-down and make the various cryogenic helium for the KSTAR Tokamak and the various cryogenic helium is distributed by the D/B as per the KSTAR requirement. In this proceeding, we will present the commissioning results of the KSTAR HRS. Circuits which can simulate the thermal loads and pressure drops corresponding to the cooling channels of each cold component of KSTAR have been integrated into the helium distribution system of the HRS. Using those circuits, the performance and the capability of the HRS, to fulfill the mission of establishing the appropriate operating condition for the KSTAR SC magnet coils, have been successfully demonstrated.