• Title/Summary/Keyword: Intelligent compaction

Search Result 14, Processing Time 0.022 seconds

Study of the Intelligent Compaction Evaluation (연속 다짐 평가에 관한 연구)

  • Park, Keub-Bo;Kim, Ju-Hyong;Cho, Sam-Deok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.722-729
    • /
    • 2010
  • In this study, we considered the development for degree of compaction for intelligent compaction. In practice, any direct or indirect method can be used as a intelligent compaction method. A series of field tests was conducted using an accelerometer. This is quick and simple indirect methods of measuring soil stiffness. Each result was compared with the results from a plate load test. A prototype device for intelligent compaction was developed, and we evaluated its performance.

  • PDF

A Study on Analysis Method for Roller Compaction Work (다짐공사에 대한 롤러의 효율적 품질관리 방안 연구)

  • Lee, Soo Min;Lee, Seung Soo;Yu, Sang Hoon;Seo, Jong Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.3
    • /
    • pp.621-627
    • /
    • 2017
  • In this study, GPS (Global Positioning System) is applied to rollers for quality control problems caused by empirical judgment of compaction construction. In addition, database and 3D modeling of location information can eliminate unnecessary compaction or excessive compaction, thereby improving quality and shortening the time. This paper presents a methodology of ICMV (Intelligent Compaction Measurement Values) analysis by designing a intelligent compaction method using an accelerometer. Detailed method of ICMV analysis includes CMV (Compaction Meter Value) analysis which can quickly and conveniently evaluate the compaction of the compacted ground.

A Review on Intelligent Compaction Techniques in Railroad Construction

  • Oh, Jeongho
    • International Journal of Railway
    • /
    • v.7 no.3
    • /
    • pp.80-84
    • /
    • 2014
  • The purpose of this paper was to review Intelligent Compaction (IC) techniques, which is regarded relatively new to the railroad roadbed construction activity. Most of civil structures are built on roadbed that supposed to provide adequate load bearing support to the upper structure through the qualified compaction process. However, it is not uncommon for structure failure attributed to inadequate compaction control take place in field sites. Unlike traditional compaction control method to check field density at several locations, IC techniques continuously measure various compaction quality indices that represent compaction uniformity. In this paper, a series of literature review relevant to IC techniques was conducted to provide concise summary on the following categories: 1) background of IC technique; 2) Summary of IC vendors and basic principles; 3) modeling of IC behavior, and 4) case study along with correlation between IC with other measurements. In summary, IC technologies seem to be promising in future railroad construction to achieve better compaction quality control so that the serviceability of railroad can be ensured with minimizing rehabilitation and maintenance activities.

A Study for Deriving Target CMV (Compaction Meter Value) of Intelligent Compaction Earthwork Quality Control (토공사 지능형 다짐 품질관리를 위한 목표 CMV(Compaction Meter Value) 도출 방안에 관한 연구)

  • Choi, Changho;Jeong, Yeong-Hoon;Baek, Sung-Ha;Kim, Jin-Young;Kim, Namgyu;Cho, Jin-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.9
    • /
    • pp.25-36
    • /
    • 2021
  • Recently, the intelligent compaction technology for quality control of earthworks has brought attention as a quality control standard for earthworks. In this study, intelligent compaction technology and earthwork quality control methods were investigated and earthwork quality control procedures using intelligent compaction technology were considered based on field tests. Through the field compaction test of the silty sand (SM) fill material, it was confirmed that CMV and bearing capcaity index from plate load tests increased as the number of compactions increased. Based on the field test data, the average CMV and quality control target CMV were derived. The target CMV (34.2) was calculated through the correlation with the bearing capacity index of the plate load test, and the target CMV (36.6) was calculated through the analysis of the CMV increase rate. In this paper, the on-site compaction quality management procedure and methodology using intelligent compaction technology were discussed, and an intelligent compaction quality management method was proposed to promote the applicability of the technology.

Field Validation of Earthwork Compaction Quality Control Based on Intelligent Compaction Technology (지능형 다짐 기술 기반 토공사 다짐 품질관리 실증 연구)

  • Baek, Sung-Ha;Kim, Jin-Young;Kim, Jisun;Cho, Jin-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.11
    • /
    • pp.85-95
    • /
    • 2023
  • This study implemented intelligent compaction technology at the construction site of the AY Highway in Gyeonggi Province, with a focus on obtaining the representative intelligent compaction value, CMV. The target CMV for quality control was established through trial construction, and the validation of the compaction quality control process based on intelligent compaction was conducted. The optimal approach for determining the target CMV was confirmed to be through linear regression of the average CMV measured within a 5-m radius from the plate load testing location. Upon assessing compaction quality against the target CMV, it was observed that the quality criteria outlined in the domestic intelligent compaction standard were met. However, the criteria outlined in Austria and the United States were not satisfied. Notably, indicators related to the variability of compaction quality did not meet the specified criteria, suggesting a stringent standard compared to the observed variability of CMV, ranging from 17% to 55%. Consequently, it is recommended to conduct additional field tests to further validate the compaction quality control process based on intelligent compaction. This will aid in confirming and enhancing the appropriateness of the regulations stipulated in each standard.

Development of Intelligent Compaction System for Efficient Quality Control (효율적 품질관리를 위한 지능형 다짐 시스템 개발)

  • Lee, Soomin;Park, Sangil;Lee, Riho;Seo, Jongwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.751-760
    • /
    • 2018
  • Currently, the quality measurement of the work is carried out by the supervisor's visual inspection, as the workers individually judge the number of resolutions, thickness, speed and vibration. After work, we are conducting follow-up work through traditional spot test, which is less representative. Therefore, it is impossible to check the results of the resolution, and there is always the possibility that problems will arise due to poor construction. This study demonstrates the feasibility of using the continuous compaction strength measurement method by comparing the continuous compaction strength measurement method and the conventional compaction strength measurement method after performing the compaction in the actual field scale in various test conditions. The validity is verified by analyzing the Compaction Meter Value of an Intelligent Compaction roller composed of a Global Positioning System and an accelerometer, Based on the proven results, a full range of quality can be confirmed without a single test. The quality confirmation is visualized in the compaction control program developed in this study, This enables the field manager to perform real-time quality monitoring at the same time as compaction.

Development of AR System for Asphalt Pavement Compaction Operation and Suggestion for Accompanying Education Program (AR을 이용한 아스팔트 포장 다짐공사 지원 시스템 구축 및 교육과정 제안)

  • Kim, Namho;Cho, Namjun;Kim, Noah
    • Journal of Practical Engineering Education
    • /
    • v.11 no.1
    • /
    • pp.33-41
    • /
    • 2019
  • A pavement construction process consists of series of lay-down operation for pavement materials to form a designated thickness and compaction operation for the lay-down layer to form a designated strength. A technological breakthrough in pavement compaction equipment was made in last 15 years in western countries: intelligent compaction roller, that is equipped with GPS along with other pavement response sensors is becoming a game-changer in pavement construction. This paper introduces AR system that may be used in asphalt pavement compaction operation using intelligent compactor. Since AR technology is very new concept in road construction society, a suggestion for accompanying education program was also made for specific task group in pavement compaction operation. Since AR technology has not been introduced in asphalt pavement compaction operation, the AR compaction management would lead the construction quality of asphalt pavement to the beyond level.

Fundamental Study on Earthwork Quality Control Based on Intelligent Compaction Technology (지능형 다짐기술을 통한 토공사 품질관리를 위한 기초 연구)

  • Baek, Sung-Ha;Kim, Jin-Young;Cho, Jin-Woo;Kim, Namgyu;Jeong, Yeong-Hoon;Choi, Changho
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.12
    • /
    • pp.45-56
    • /
    • 2020
  • In this paper, intelligent compaction (IC) technology and the earthwork quality control specifications based on IC were analyzed, and the field study was conducted to investigate the relationship between the representative IC value CMV (Compaction Meter Value) and spot test results (plate bearing test and field density test). As the number of roller passes increased, both the CMV and spot test results increased. However, point-by-point comparison between CMV and spot test results yielded poor quality correlations; this is because the ununiform stiffness of the underlying layer and the moisture content of the lift layer affected the CMV and spot test results, respectively. Most international specifications related to IC requires knowledge of the IC values and their relationships with the soil properties obtained by the traditional spot tests. Therefore, for the successful implementation of intelligent compaction technology into earthwork construction practice, the number of roller passes as well as the lift thickness and the moisture content of the soil should be carefully considered.

Development of an Intelligent Compaction Evaluation Method Based on Statistics Analysis (통계해석에 기초한 연속다짐평가기법 개발)

  • Park, Keun-Bo;Kim, Ju-Hyong
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.8
    • /
    • pp.5-16
    • /
    • 2011
  • The objective of this paper is to assess the potential use of the resilient force of the ground obtained from an accelerometer and to propose a new compaction control process. Several comprehensive field experimental programs were conducted to analyze the correlation of compaction results obtained from an accelerometer and conventional test methods (e.g. the plate load test and field density test). This study focused on comparing the compaction results obtained from an accelerometer with conventional test results statistically. Based on the statistical analysis results, impact and resilient force measured from an accelerometer, mounted on the drum of a roller are very useful factors for continuous compaction control. A new compaction criteria determination process using an accelerometer is also proposed in this study.