• Title/Summary/Keyword: Intelligent wheelchair

Search Result 36, Processing Time 0.03 seconds

Collision Avoidance Algorithm of an Intelligent Wheelchair Considering the User's Safety with a Moving Obstacle (탑승자의 안전을 고려한 지능형 휠체어의 단일 이동 장애물 충돌회피 알고리즘)

  • Kim, Yong Hwi;Yoon, Tae Sung;Park, Jin Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.10
    • /
    • pp.936-940
    • /
    • 2013
  • As the ageing population grows around the world, the demand for electric wheelchairs, an important mobility assistance device for the disabled and elderly, is gradually increasing. Therefore, a number of studies related to intelligent wheelchairs are actively underway to improve safety and comfort for wheelchair users. However, previous collision avoidance studies for intelligent wheelchairs have concentrated on collision avoidance methods with the shortest distance and by only changing either velocity or heading angle, rather than considering the forces exerted on the user. If a collision avoidance algorithm that does not consider these forces is applied to an intelligent wheelchair, there is a possibility of an accident due to falling as wheelchair users are generally disabled and elderly people. In this paper, we propose a collision avoidance algorithm which minimizes the forces exerted on a wheelchair user by minimizing the variation of the wheelchair's velocity and heading angle when the sizes, positions, velocities, and heading angles of a wheelchair and a moving obstacle are known.

Motored Wheel Chair applicable to a variety of disabled

  • Toru Jozaki;Motohiro Tanaka;J, Lawn-Murry;Takakazu Ishimatsu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.77.6-77
    • /
    • 2002
  • This paper describes a motored wheelchair that is suitable for disabled persons. A distinguish feature of our wheelchair is that a closed link mechanism is introduced. This link module changes conventional motored wheelchairs to computer controlled ones. It means that using intelligent functions of the computer, conventional motored wheelchairs can be navigated like an intelligent robot. Three examples of intelligent navigation functions are demonstrated. The first one is a motored wheelchair controlled by the head movement of the operator. The second one is a motored wheelchair with the image processing. Last one is a motored wheelchair with the remote sensing function.

  • PDF

Design of Case-based Intelligent Wheelchair Monitoring System

  • Kim, Tae Yeun;Seo, Dae Woong;Bae, Sang Hyun
    • Journal of Integrative Natural Science
    • /
    • v.10 no.3
    • /
    • pp.162-170
    • /
    • 2017
  • In this paper, it is aim to implement a wheelchair monitoring system that provides users with customized medical services easily in everyday life, together with mobility guarantee, which is the most basic requirement of the elderly and disabled persons with physical disabilities. The case-based intelligent wheelchair monitoring system proposed in this study is based on a case-based k-NN algorithm, which implements a system for constructing and inferring examples of various biometric and environmental information of wheelchair users as a knowledge database and a monitoring interface for wheelchair users. In order to confirm the usefulness of the case-based k-NN algorithm, the SVM algorithm showed an average accuracy of 84.2% and the average accuracy of the proposed case-based k-NN algorithm was 86.2% And showed higher performance in terms of accuracy. The system implemented in this paper has the advantage of measuring biometric information and data communication regardless of time and place and it can provide customized service of wheelchair user through user friendly interface.

The design & implementation of intelligent motorized wheelchair (지능형 전동 휠체어의 설계 및 구현)

  • 강재명;강성인;김정훈;류홍석;김관형;이상배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.10-13
    • /
    • 2002
  • In this study, we used a 16-bit microprocessor, 80C196KC for a control part in order to develop a multi-functional wheel-chair system, and implemented a joy-stick to control this system. For the complete system, we used a commercial electromotive wheelchair as a basic plant, and applied an encoder to get the rotating number of the motor to transfer data to the MCU to control the motor. We used PWM (Pulse Width Modulation) method to control the wheel-chair motor where a H-bridge circuit was configured. We used the fuzzy control algorithm for the operation of DC motor, which was attached to the electromotive wheelchair and manipulated following the change of the joystick position while a user was controlling the Joystick. He also could control the speed and direction of DC motor as well as control position information.

  • PDF

Designing an Intelligent Rehabilitation Wheelchair Vehicle System Using Neural Network-based Torque Control Algorithm

  • Kim, Taeyeun;Bae, Sanghyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.5878-5904
    • /
    • 2017
  • This paper proposes a novel intelligent wheelchair vehicle system that enables upper limb exercises, lower limb standing exercises and rehabilitation training in a daily life. The proposed system, which can be used to prevent at least the degeneration of body movements and further atrophy of musculoskeletal system functions, considers the characteristics and mobility of the old and the disabled. Its main purpose is to help the old and the disabled perform their daily activities as much as they can, minimizing the extent of secondary disabilities. In other words, the system will provide the old and the disabled with regular and quantitative rehabilitation exercises and diagnosis using the wheelchair-based upper/lower limb rehabilitation vehicle system and then verify their effectiveness. The system comprises an electric wheelchair, a biometric module to identify individual characteristics, and an upper/lower limb rehabilitation vehicle. In this paper the design and configuration of the developed vehicle is described, and its operation method is presented. Moreover, to verify the tracking performance of the proposed system, dangerous situations according to biosignal changes occurring during the rehabilitation exercise of a non-disabled examinee are analyzed and the performance of the upper/lower limb rehabilitation exercise function depending on muscle strength is evaluated through a neural network algorithm.

Intelligent Smart Wheelchiars Using IoT (IoT를 활용한 지능형 스마트 휠체어)

  • Choi, Yu-Ree;Ko, Kyung-Eun;Park, Hee-Joo;Lee, Ki-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.1
    • /
    • pp.89-94
    • /
    • 2022
  • With the recent acceleration of an aging society, the use of wheelchairs is increasing, and wheelchair accidents are also increasing. However, despite this situation, the domestic wheelchair market is lacking in deveolpment of additional functions to prevent wheechair collisions and falls. Therefore, this paper aims to design and implement intelligent smart wheelchairs equipped with functions such as stair wheels and automatic illumination sensor headlights that allow wheelchairs to automatically avoid obstacles, notify interlocking applications when falls are detected. Accordingly, it is expected to increase the convenience of wheelchair users and prevent frequent wheelchair accidents.

Safe and Reliable Intelligent Wheelchair Robot with Human Robot Interaction

  • Hyuk, Moon-In;Hyun, Joung-Sang;Kwang, Kum-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.120.1-120
    • /
    • 2001
  • This paper proposes a prototype of a safe and reliable wheelchair robot with Human Robot Interaction (HRI). Since the wheelchair users are usually the handicapped, the wheelchair robot must guarantee the safety and reliability for the motion while considering users intention, A single color CCD camera is mounted for input user´s command based on human-friendly gestures, and a ultra sonic sensor array is used for sensing external motion environment. We use face and hand directional gestures as the user´s command. By combining the user´s command with the sensed environment configuration, the planner of the wheelchair robot selects an optimal motion. We implement a prototype wheelchair robot, MR, HURI (Mobile Robot with Human Robot Interaction) ...

  • PDF

Intelligent Wheelchair System using Face and Mouth Recognition (얼굴과 입 모양 인식을 이용한 지능형 휠체어 시스템)

  • Ju, Jin-Sun;Shin, Yun-Hee;Kim, Eun-Yi
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.2
    • /
    • pp.161-168
    • /
    • 2009
  • In this paper, we develop an Intelligent Wheelchair(IW) control system for the people with various disabilities. The aim of the proposed system is to increase the mobility of severely handicapped people by providing an adaptable and effective interface for a power wheelchair. To facilitate a wide variety of user abilities, the proposed system involves the use of face-inclination and mouth-shape information, where the direction of an Intelligent Wheelchair(IW) is determined by the inclination of the user's face, while proceeding and stopping are determined by the shape of the user's mouth. To analyze these gestures, our system consists of facial feature detector, facial feature recognizer, and converter. In the stage of facial feature detector, the facial region of the intended user is first obtained using Adaboost, thereafter the mouth region detected based on edge information. The extracted features are sent to the facial feature recognizer, which recognize the face inclination and mouth shape using statistical analysis and K-means clustering, respectively. These recognition results are then delivered to a converter to control the wheelchair. When assessing the effectiveness of the proposed system with 34 users unable to utilize a standard joystick, the results showed that the proposed system provided a friendly and convenient interface.

Target Tracking System for an Intelligent Wheelchair Using Infrared Range-finder and CCD Camera (적외선 레인지파인더와 CCD 카메라를 이용한 지능 휠체어용 표적 추적 시스템)

  • Ha Yun-Su;Han Dong-Hee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.560-570
    • /
    • 2005
  • In this paper, we discuss the tracking system for a wheelchair which can follow the path of a human target such as a nurse in hospital. The problem of human tracking is that it requires recognition of feature as well as the tracking of human positions. For this purpose the use of a high cost visual sensor such as laser finder or streo camera makes the tracking a high cost additional expense. This paper proposes the tracking system uses a low cost infrared range-finder and CCD camera, The Infrared range-finder and CCD camera can create a target candidate through each target recognition algorithm. and this information is fused in order to reduce the uncertainties of a target decision and correct the positional error of the human. The effectiveness of the proposed system is verified through experiments.