• 제목/요약/키워드: Interaction energy between particle and the substrate

검색결과 3건 처리시간 0.023초

고형오구 입자크기가 고형오구의 세척성에 미치는 영향 (The Effect of Particle Size on the Detergency of Particulate Soil)

  • 문미화;강인숙
    • 한국의류학회지
    • /
    • 제34권4호
    • /
    • pp.653-662
    • /
    • 2010
  • This study investigates the effect of particle size on the detergency of particulate soil using an $\alpha-Fe_2O_3$ particle as the model. Monodispersed spherical $\alpha-Fe_2O_3$ particles were prepared by the hydrothermal aging of an acidic $FeCl_3$ and HCl solution. The $\xi$-potential of PET fiber was measured by the streaming potential method. The potential energy of interaction between the particle and fiber was calculated using the heterocoagulation theory for a sphere-plate model. The $\xi$-potential of PET fiber and potential energy of interaction between particles and fiber increased with a decreasing particle size in a DBS solution. However, in the nonionic surfactant solution, the $\xi$-potential signs of PET fiber and $\alpha-Fe_2O_3$ particles were (-) and (+), respectively; there was no repulsive power between the particles and substrate. The adhesion of particles to the fabric increased with increasing particle size in the anionic surfactant solution and their removal from the fabric increased with a decreasing particle size. The adhesion of particles to the fabric and their removal from the fabric was biphasic with a maximum and minimum at 0.1% concentration of the surfactant solution. In the nonionic surfactant solution the adhesion of particles to fabric and their removal from the fabric were greater than the ones in the anionic surfactant DBS solution.

Comparison of carbon nanotube growth mode on various substrate

  • I.K. Song;Y.S. Cho;Park, K.S.;Kim, D.J.
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 춘계학술발표강연 및 논문개요집
    • /
    • pp.44-44
    • /
    • 2003
  • Growth mechanism of carbon nanotubes(CNTs) synthesized by chemical vapor deposition is abided by two growth modes. These growth modes are classified by the position of activated catalytic metal particle in the CNTs. Growth mode can be also affected by interaction between substrate and catalytic metal and induced energy such as thermal and plasma. We studied the reaction of catalytic metal to the substrate and growth mode of CNTs. Various substrates such as Si(100), graphite plate, coming glass, sapphire and AAO membrane are used to study the relation between catalytic metal and substrate in the synthesis of CNTs. For catalytic metal, thin film was deposited on various substrate via sputtering technique with a thickness of ∼20nm and magnetic fluids with none-sized particles were dispersed on AAO membrane. After laying process on AAO membrane, it was dried at 80$^{\circ}C$ for 8 hour. Synthesizing of CNTs was carried out at 900$^{\circ}C$ in NH3/C2H2 mixture gases flow for 10minutes.

  • PDF

4H-SiC기판 위의 자기구조화된 Ag/Ti 나노입자 제어를 위한 열처리 분석 (Annealing Effect on controlling Self-Organized Ag/Ti Nanoparticles on 4H-SiC Substrate)

  • 김소망;오종민;구상모
    • 전기전자학회논문지
    • /
    • 제20권2호
    • /
    • pp.177-180
    • /
    • 2016
  • 본 연구에서는 4H-SiC(0001)기판 위에서 형성되는 나노구조화를 제어하기 위해 상지층과 하지층으로 구성된 이중층 금속을 증착하고 두께, 열처리 시간을 변화하였다. 또한 표면에너지와 응집현상의 상관관계를 분석하기 위해 SiC와는 다른 표면에너지를 갖는 Glass와 Si기판에도 같은 조건으로 실험하였다. FE-SEM을 통하여 금속이 나노구조화를 형성하는 두께가 Ag=20nm, Ti=2nm임을 확인 했으며 두께가 두꺼울 수록 나노 입자가 형성되지 않았다. 세기판의 표면에너지를 구하기 위해 접촉각 측정기를 통해 정접촉각법으로 측정하였다. 그 결과 표면에너지 값이 가장 높은 Glass(53.89 mN/m) 기판에서 나노 입자가 가장 고르게 분포된 형태를 보였으며 SiC(41.13 mN/m)에서 나노구조화 되는 양상을 보였고, Si(32.96 mN/m)에서는 NPs 형성이 되지 않았다. 표면에너지가 작을수록 나노 입자형성이 고르게 분포되는 현상을 Young equation으로 분석하였다.