• Title/Summary/Keyword: Interaction strength number

Search Result 81, Processing Time 0.029 seconds

Computing Method for The Number of The Interaction Strength Based on Software Whitebox Testing (소프트웨어 화이트박스 테스트의 교호 강도 수 기반 테스트 방법)

  • Choi, Hyeong-Seob;Park, Hong-Seong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.5
    • /
    • pp.29-36
    • /
    • 2009
  • Cost and Time for software test is gradually increasing as the software complexity increases. To cope with this problem, it is very important to reduce the number of test cases used in the software test. The interaction strength number is especially important in decision of the number of test cases for the unit test, where the interaction strength number means the number of arguments which affect the results of a function by the analysis of their combination used in source code of the function. This paper proposes the algorithm that computes the number of the interaction strength, where analyzes the patterns used in the source code of a function and increase its number when the pattern matches one of the specified patterns. The proposed algorithm is validated by some experiments finding coverage and the number of fault detection.

Drug-Biomacromolecule Interaction VIII

  • Kim, Chong-Kook;Yang, Ji-Sun;Lim, Yun-Su
    • Archives of Pharmacal Research
    • /
    • v.7 no.2
    • /
    • pp.87-93
    • /
    • 1984
  • The effects of ionic strength and pH on the binding of cefazolin to bovine serum albumin (BSA) were studied by UV difference spectrophotometry. As ionic strength at constant pH and temperature increases, the apparent bining constant decreased but the number of binding sites remained almost constant at 2. The constancy of the number of binding sites with increasing the ionic strength suggests that purely electrostatic forces between BSA and drug do not have great importance in the drug binding, even though there is a decrease in the apparent binding constant. Thus, the effect of ionic strength on the interaction between drug and BSA may be explained by the changes in ionic atmosphere of the aggregated BSA molecules and competitive inhibition by phosphate ions. In addition, the higher apparent binding constant at high ionic strength is explained by conformational changes of BSA from its aggregate forms into subunits. The pH effects on the afinity of interactions indicated that the binding affinity of cefazoline is higher in the neutral region than in the alkaline region. An d at high pH value, the number of binding sites decreased from 2 to 1 because of the conformational change of BSA in the alkaline region.

  • PDF

Inelastic displacement ratios for evaluation of stiffness degrading structures with soil structure interaction built on soft soil sites

  • Aydemir, Muberra Eser
    • Structural Engineering and Mechanics
    • /
    • v.45 no.6
    • /
    • pp.741-758
    • /
    • 2013
  • In this study, inelastic displacement ratios are investigated for existing systems with known lateral strength considering soil structure interaction. For this purpose, SDOF systems for period range of 0.1-3.0 s with different hysteretic behaviors are considered for a number of 18 earthquake motions recorded on soft soil. The effect of stiffness degradation on inelastic displacement ratios is investigated. The Modified Clough model is used to represent structures that exhibit significant stiffness degradation when subjected to reverse cyclic loading and the elastoplastic model is used to represent non-degrading structures. Soil structure interaction analyses are conducted by means of equivalent fixed base model effective period, effective damping and effective ductility values differing from fixed-base case. For inelastic time history analyses, Newmark method for step by step time integration was adapted in an in-house computer program. A new equation is proposed for inelastic displacement ratio of system with SSI with elastoplastic or degrading behavior as a function of structural period ($\tilde{T}$), strength reduction factor (R) and period lengthening ratio ($\tilde{T}$/T). The proposed equation for $\tilde{C}_R$ which takes the soil-structure interaction into account should be useful in estimating the inelastic deformation of existing structures with known lateral strength.

A New Experiment on Interaction of Normal Shock Wave and Turbulent Boundary Layer in a Supersonic Diffuser (초음속디퓨져에서 발생하는 수직충격파의 난류경계층의 간섭에 관한 실험)

  • 김희동;홍종우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2283-2296
    • /
    • 1995
  • Experiments of normal shock wave/turbulent boundary layer interaction were conducted in a supersonic diffuser. The flow Mach number just upstream of the normal shock wave was in the range of 1.10 to 1.70 and Reynolds number based upon the turbulent boundary layer thickness was varied in the range of 2.2*10$^{[-994]}$ -4.4*10$^{[-994]}$ . The wall pressures in streamwise and spanwise directions were measured for two test cases, in which the turbulent boundary layer thickness incoming into the supersonic diffuser was changed. The results show that the interactions of normal shock wave with turbulent boundary layer in the supersonic diffuser can be divided into three patterns, i.e., transonic interaction, weak interaction and strong interaction, depending on Mach number. The weak interactions generate the post-shock expansion which its strength is strong as the Mach number increases and the strong interactions form the pseudo-shock waves. From the spanwise measurements of wall pressure, it is known that if the flow Mach number is low, the interacting flow fields essentially appear two-dimensional, but they have an apparent 3-dimensionality for the higher Mach numbers.

Drug-Biomacromolecule Interaction (XIII)-Effect of ionic Strength, pH and Temperature on Binding of Cephalothin to Bovine Serum Albumin- (약물과 생체고분자 간의 상호작용(제 13보)-세파로친과 소혈청알부민의 결합에 미치는 이온강도, pH 및 온도의 영향)

  • Kim, Chong-Kook;Lim, Yun-Su;Yang, Ji-Sun;Jeong, Eun-Ju
    • Journal of Pharmaceutical Investigation
    • /
    • v.19 no.3
    • /
    • pp.163-171
    • /
    • 1989
  • To investigate the protein binding characteristics of cephalothin, the effects of ionic strength, pH and temperature on the binding of cephalothin to bovine serum albumin (BSA) were studied by UV difference spectrophotometric method. With increasing ionic strength at constant PH and temperature, association constant decreased, but the number of binding sites sites was about 2 constantly. It may be deduced that the binding process is not only due to electrostatic forces. And the increased association constant at high ionic strength is explained by conformational changes of BSA from complex to subunits. The pH effect on the affinity of interaction indicated that the binding affinity of drug is higher in the neutral region than in the alkaline region. And, at high pH value, the number of binding sites decreased from 2 to 1 because of the conformational changes of BSA in alkaline region. The decrease in binding affinity of BSA to drug with increasing temperature was characteristic of an exothermic reaction. And the negative sign of ${\Delta}G^{\circ}$ meant that the binding process occurs spontaneously under the experimental conditions. In cephalothin-BSA complex formation, since the net enthalpy change value and entropy change value are positive, it is assumed that hydrophobic bindings are predominant in this binding process.

  • PDF

Numerical study on the oblique shock wave/vortex interaction (경사충격파와 와류 상호작용에 대한 수치적 연구)

  • Mun, Seong-Mok;Kim, Jong-Am;No, O-Hyeon
    • 한국항공운항학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.240-246
    • /
    • 2004
  • For the prediction on the onset of oblique shock wave-induced vortex breakdown, computational studies on the Oblique Shock wave/Vortex Interaction (OSVI) are conducted and compared with both experimental results and analytic model. A Shock-stable numerical scheme, the Roe scheme with Mach number-based function (RoeM), and a two-equation eddy viscosity-transport approach are used for three-dimensional turbulent flow computations. The computational configuration is identical to available experiment, and we attempt to ascertain the effect of parameters such as a vertex strength, streamwise velocity deficit, and shock strength at a freestream Mach number of 2.49. Numerical simulations using the ${\kappa}-{\omega}SST$ turbulence model and suitably modeled vortex profiles are able to accurately reproduce many fine features through a direct comparison with experimental observations. The present computational approach to determine the criterion on the onset of oblique shock wave-induced vortex breakdown is found to be in good agreement with both the experimental result and the analytic prediction.

  • PDF

The Ultimate Pattern of Shock-Vortex Interaction

  • Chang, Keun-Shik;Barik, Hrushikesh;Chang, Se-Myong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.337-339
    • /
    • 2008
  • As a shock impinges into a vortex of variable strength, complex shock diffraction can occur. Since a vortex has a fixed rotating direction, the shock wave travelling in one direction creates strong asymmetry in the vortex flow field. The process is that first the shock is divided into two parts by the vortex. One part is moving in the adverse direction opposite to the vortex flow which is captured by the vortex center. The other part is moving in the favorable direction, namely, in the direction same as the vortex flow; it is swung around the vortex, accelerating the vortex flow. In this paper we have investigated numerically using ENO scheme how and why the shock-vortex interaction patterns appear so different for different parametric values. Conclusion is that there are three different types of shock-vortex interaction depending on two related parameters: shock Mach number and vortex Mach number. We present a parameter map by which we can discern what type of interaction pattern appears as a shock impinges into a vortex.

  • PDF

The Ultimate Pattern of Shock-Vortex Interaction

  • Chang, Keun-Shik;Barik, Hrushikesh;Chang, Se-Myong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.337-339
    • /
    • 2008
  • Abstract: As a shock impinges into a vortex of variable strength, complex shock diffraction can occur. Since a vortex has a fixed rotating direction, the shock wave travelling in one direction creates strong asymmetry in the vortex flow field. The process is that first the shock is divided into two parts by the vortex. One part is moving in the adverse direction opposite to the vortex flow which is captured by the vortex center. The other part is moving in the favorable direction, namely, in the direction same as the vortex flow; it is swung around the vortex, accelerating the vortex flow. In this paper we have investigated numerically using ENO scheme how and why the shock-vortex interaction patterns appear so different for different parametric values. Conclusion is that there are three different types of shock-vortex interaction depending on two related parameters: shock Mach number and vortex Mach number. We present a parameter map by which we can discern what type of interaction pattern appears as a shock impinges into a vortex.

  • PDF

Investigation of the Effects of Resting Time and Trial on the Maximal Grip Strength

  • Kwak, Doo-Hwan;Lee, Kyung-Sun;Kwag, Jong-Seon;Jung, Myung-Chul;Kong, Yong-Ku
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.3
    • /
    • pp.381-387
    • /
    • 2011
  • Objective: The aim of this study was to investigate the maximal grip strength for the combinations of resting time and trial and to provide guideline of resting time for the maximum gripping task associated with the number of trials. Background: Despite many previous researches for the maximal grip strength, few studies have considered the effect of both trials and rest time on the maximum grip strength. Methods: A total of thirty subjects participated in the study. The average of maximum grip strength was measured using JAMAR hydraulic hand dynamometer. The testing position was same as the position recommended by the American Society of Hand Therapists. The between-subject experimental design has been conducted in this study. Trials(1~20 trials) and rest time(2, 3, and 4min) were considered as independent variables, and the maximum grip strength was considered as dependent variable, respectively, in this study. Results: According to the result of the number of trials, the maximal grip strength decreased gradually as the number of trials increased. The ANOVA result showed that the main effect was significant for both resting time(p<.0001) and trial(p<.0001), and the interaction was significant(p<0.0086). Conclusions: The maximal grip strength decreased gradually as the number of trials increased. Thus, basic guideline of resting time was suggested for the number of trials of maximal grip strength tests in this study.

Estimation of yield strength due to neutron irradiation in a pressure vessel of WWER-1000 reactor based on the correction of the secondary displacement model

  • Elaheh Moslemi-Mehni;Farrokh Khoshahval;Reza Pour-Imani;M.A. Amirkhani-Dehkordi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3229-3240
    • /
    • 2023
  • Due to neutron radiation, atomic displacement has a significant effect on material in nuclear reactors. A range of secondary displacement models, including the Kinchin-Pease (K-P), Lindhard, Norgett-Robinson-Torrens (NRT), and athermal recombination-corrected displacement per atom (arc-dpa) have been suggested to calculate the number of displacement per atom (dpa). As neutron elastic interaction is the main cause of displacement damage, the focus of the current study is to calculate the atomic displacement caused by the neutron elastic interaction in order to estimate the exact amount of yield strength in a WWER-1000 reactor pressure vessel. To achieve this purpose, the reactor core is simulated by MCNPX code. In addition, a program is developed to calculate the elastic radiation damage induced by the incident neutron flux (RADIX) based on different models using Fortran programming language. Also, due to non-elastic interaction, the displacement damage is calculated by the HEATR module of the NJOY code. ASME E-693-01 standard, SPECTER, NJOY codes, and other pervious findings have been used to validate RADIX results. The results showed that the RADIX(arc-dpa)/HEATR outputs have appropriate accuracy. The relative error of the calculated dpa resulting from RADIX(arc-dpa)/HEATR is about 8% and 46% less than NJOY code, respectively in the ¼ and ¾ vessel wall.