• Title/Summary/Keyword: Interior Permanent Magnet Synchronous Motor

Search Result 363, Processing Time 0.03 seconds

Vector Control of Interior Permanent Magnet Synchronous Motor without Speed Sensor (속도센서 없는 매입형 영구자석 동기전동기의 벡터제어)

  • Choi, Jong-Woo;Lee, Seung-Hun;Kim, Heung-Geun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.7
    • /
    • pp.1241-1249
    • /
    • 2007
  • Lately, many approaches of speed sensorless control method for Interior Permanent Magnet Synchronous Motor(IPMSM) ha, been developed. This paper proposes a novel sensorless algorithm for speed estimation of IPMSM. First of all, proposes sensorless method estimates flux of rotor using foundational voltage equation of IPMSM and then estimates position and speed of rotor using Phase Locked Loop(PLL). Proposed sensorless algorithm demonstrated through simulation using Matlab simulink and experiment.

Inductance Calculation and Speed-Power Characteristic of Interior Type Permanent Magnet Synchronous Motor by FEM (유한요소법을 이용한 매입형 영구자석 동기전동기의 인덕턴스 산정 및 속도-출력 특성)

  • Gang, Gyu-Hong;Hong, Jeong-Pyo;Kim, Gyu-Tak
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.8
    • /
    • pp.408-416
    • /
    • 1999
  • The characteristics of permanent magnet synchronous motor are defined by airgap flux and circuit parameters. Interior Permanent Magnet Synchronous Motor(IPMSM) has a nonlinear characteristics due to structural speciality of rotor, so it is difficult to analyze circuit parameters and field-weakening characteristics of IPMSM. This paper presents the calculation of circuit parameters by using Finite Element Method(FEM) taken into consideration of nonlinear characteristics. Using the circuit parameters by FEM, IPMSM is analyzed to field-weakening characteristics and is compared with the Equivalent Magnetic Circuit(EMC) in which lumped parameter is consideration.

  • PDF

On-line Parameter Estimation of Interior Permanent Magnet Synchronous Motor using an Extended Kalman Filter

  • Sim, Hyun-Woo;Lee, June-Seok;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.600-608
    • /
    • 2014
  • This paper presents estimation of d-axis and q-axis inductance of an interior permanent magnet synchronous motor (IPMSM) by using an extended Kalman filter (EKF). The EKF is widely used for control applications including the motor sensorless control and parameter estimation. The motor parameters can be changed by temperature and air-gap flux. In particular, the variation of the inductance affects torque characteristics like the maximum torque per ampere (MTPA) control. Therefore, by estimating the parameters, it is possible to improve the torque characteristics of the motor. The performance of the proposed estimator is verified by simulations and experimental results based on an 11kW PMSM drive system.

The Study on the improvement of Characteristics of Permanent Magnet Synchronous Motor for Washing Machine (세탁기용 영구자석 동기전동기의 특성 향상에 관한 연구)

  • Jung, Dae-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.10
    • /
    • pp.47-53
    • /
    • 2015
  • IPMSM(Insert Permanent Magnet Synchronous Motor) is a very high degree of freedom in the design according to the permanent magnet insertion position. And the performance of IPMSM is affected a lot on barrier shape which determines the magnetic flux path from magnet. Thus the position of permanent magnet and the barrier shape has to be designed by considering both specification and operation condition. In the paper, the permanent magnet and barrier shape which is suitable for direct drive motor of washing machine has been studied. In addition, in order to verify the validity of the study, the test was evaluated by making a prototype motor.

Real-Time Implementation of Brain Emotional Learning Developed for Digital Signal Processor-Based Interior Permanent Magnet Synchronous Motor Drive Systems

  • Sadeghi, Mohamad-Ali;Daryabeigi, Ehsan
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.74-81
    • /
    • 2014
  • In this study, a brain emotional learning-based intelligent controller (BELBIC) is developed for the speed control of an interior permanent magnet synchronous motor (IPMSM). A novel and simple model of the IPMSM drive structure is established with the intelligent control system, which controls motor speed accurately without the use of any conventional PI controllers and is independent of motor parameters. This study is conducted in both real time and simulation with a new control plant for a laboratory 3 ph, 3.8 Nm IPMSM digital signal processor (DSP)-based drive system. This DSP-based drive system is then compared with conventional BELBIC and an optimized conventional PI controller. Results show that the proposed method performs better than the other controllers and exhibits excellent control characteristics, such as fast response, simple implementation, and robustness with respect to disturbances and manufacturing imperfections.

A Comparative Analysis of Test Methods of Measuring d- and q-Axes Inductances for Interior Permanent Magnet Synchronous Motor (매입형 영구자석 동기전동기의 인덕턴스 측정법 비교 분석)

  • Kim, Seung-Joo;Kim, Cherl-Jin;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.923-928
    • /
    • 2009
  • The performance analysis and robust control of the interior permanent magnet synchronous motor(IPMSM) greatly depend on accurate value of its parameters. To achieve the high performance of torque control, it is necessary to consider exact inductance values because the inductances are nonlinear parameters of operating the IPMSM. Therefore many different methods have been performed for analysis of the methodology for the exact measurement of synchronous inductances. None of them is considered standard, and accuracy levels of all these methods are also not consistent. Among these experimental methods, the DC current decay test and the vector current control test are ideal for a laboratory environment. In this paper, these two test methods are compared by applying inductances to the IPMSM. The paper analyzes the measured inductances of the two methods and their differences with inductances obtained from the finite element method(FEM).

Design and Analysis of Interior Permanent Magnet Synchronous Motor Considering Saturated Rotor Bridge using Equivalent Magnetic Circuit

  • Shin, Kyung-Hun;Yu, Ju-Seong;Choi, Jang-Young;Cho, Han-Wook
    • Journal of Magnetics
    • /
    • v.19 no.4
    • /
    • pp.404-410
    • /
    • 2014
  • This paper considers the design and performance evaluation of interior permanent magnet synchronous motors (IPMSMs). The initial design such as the sizing and shape design of the stator and rotor is performed for a given load condition. In particular, the equivalent magnetic circuit (EMC) is employed both to design the mechanical parameters of the rotor while considering nonlinear magnetic saturation effect and to analyze the magnetic characteristics of the air-gap of the motor. The designed motor is manufactured and tested to confirm the validity of the design processes and simulated results.

Loss Minimizing Vector Control of Interior Permanent Magnet Synchronous Motor (매입형 영구자석 동기전동기의 최소 손실 벡터제어)

  • Chung, Euihoon;Lee, Yongjae;Ha, Jung-Ik
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.4
    • /
    • pp.330-336
    • /
    • 2015
  • This paper presents a loss-minimizing vector control method for interior permanent magnet synchronous motor (IPMSM). Conventionally, maximum torque per ampere (MTPA) control, which minimizes copper loss, has been widely used in industry. Iron loss, however, is not considered in MTPA control. In this paper, the loss model, including iron loss and copper loss, is derived to further reduce drive loss. The loss-minimizing vector controller is implemented based on the loss model. The controller generates optimal current vectors according to the operating conditions. The performance and validity of the proposed method are proved by experimental results through comparison with conventional methods.

Torque Characteristics Analysis of Interior Permanent Magnet Synchronous Motor According to Pole Arc Ratio (극호비 변화에 따른 영구자석 매입형 동기전동기의 토크 특성 해석)

  • LEE Kab-Jae;Kim Ki-Chan;Lee Jong-In;Kwon Joong-Lok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.2
    • /
    • pp.81-87
    • /
    • 2005
  • The torque characteristics of permanent magnet(PM) motor is varied according to magnet width. In this paper, the design method of magnet and magnetic circuit is proposed in order to improve the torque of Interior Permanent Magnet Synchronous Motor(IPMSM). This paper presents the effects of pole arc ratio and salient pole ratio on the torque and torque ripple in the IPMSM with concentrated winding.

Study on the Characteristic of Ld, LQ Parameter for Interior Permanent Magnet Synchronous Motor in different barrier width (배리어 길이에 따른 매입형 영구자석 동기전동기의 Ld, Lq 파라미터 특성에 관한 연구)

  • Jang, Ik-Sang;Kim, Seung-Joo;Jin, Chang-Sung;Kim, Ki-Chan;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.496-501
    • /
    • 2009
  • Interior Permanent Magnet Synchronous Motor (IPMSM) produces two kind of torque that Magnetic and Reluctance torque. The permanent magnet linkage flux ${\Psi}_a$ and d-axis and q-axis inductances have an important influence on the torque characteristic of IPMSM. Thus their accurate prediction is essential for predicting performance aspect such as the torque and flux-weakening capabilities. In this paper, the influence of barrier width on the ${\Psi}_a$ and $L_d$, $L_q$ is calculated by FEM analysis. Predictions are validated by comparison the average torques, using Maxwell Stress Tensor method.