• Title/Summary/Keyword: Interior permanent magnet synchronous generator

Search Result 12, Processing Time 0.023 seconds

Characteristics of Maximization Output Control for Variable Wind Generation System Using IPMSG (IPMSG을 이용한 풍력 발전 시스템의 최대 출력화 제어 특성)

  • Mun, Sang-Pil;Heo, Young-Hwan;Kim, Jong-Suk;Park, Han-Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.3
    • /
    • pp.151-157
    • /
    • 2016
  • This paper proposes the variable wind generation system based on the direct torque control(DTC)for the interior permanent magnet synchronous generator. The proposed system can achieve the MPPT control without wind speed in addition to the speed and position sensorless control as well as the conventional current control method. The DTC has several advantages such as simply system configuration, ease of the flux weakening control and the sensorless control. The experimental results show the performance of the proposed wind generation system.

Design Analysis and Economic Analysis of high Efficiency 100kW Generator for Hydro Power System (소수력 발전용 고효율 100kW 발전기의 설계해석 및 경제성 분석)

  • Jee, In-Ho;Kang, Seung-Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.3
    • /
    • pp.428-438
    • /
    • 2016
  • This paper shows the design of the 100 kW IPMSG for small hydraulic power generator. The high-efficient generator, method of the dual layer interior permanent magnet was studied to improve the method of the single layer interior permanent magnet, which is mostly used. Analysis of magnet arrangement and cogging torque was done by FEM. According to structure analysis of dual layer interior permanent magnet, the amount of usage of the permanent magnet was reduced and cogging torque was decreased as well. With these successful results, the high-efficient generator design was accomplished. Based on the results of the structure analysis, the test product was designed and manufactured. And the design values and performance outputs were compared and verified with success. Also, the economic feasibility was conducted based on the electric power generated from the test product installed at the site. By the B/C analysis, in case that only SMP was analyzed, B/C ratio was 1.24 at the discount ratio of 5.5%, which considered to be economically feasible. The study is expected to be used for the application of developing large scale high-efficient interior permanent magnet synchronous generator.

Improved back-EMF of 30kW Interior Permanent Magnet Synchronous Generator for Small Hydropower Generation (소수력 발전용 30kW급 매입영구자석형 동기발전기의 역기전력 개선)

  • Kim, Daekyong;Jeong, Hak-Gyun;Park, Han-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.5
    • /
    • pp.660-665
    • /
    • 2014
  • This paper presents the improved back-EMF of Interior Permanent Magnet Synchronous Generator(IPMSM) for small hydropower generator. To improve back-EMF characteristics, the size and position of notch are applied to the rotor. In addition, parametric analysis of the notch size and position was performed. Finally, the back-EMF characteristic analysis are confirmed by the experimental results.

Comparative Analysis of Surface-mounted and Interior Permanent Magnet Synchronous Motor (표면부착형 / 매입형 영구자석 동기 전동기의 비교 분석)

  • Park, Hyung-Il;Kim, Kwan-Ho;Shin, Kyung-Hun;Jang, Seok-Myeong;Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.987-994
    • /
    • 2016
  • In this paper, we present a comparative analysis of surface-mounted permanent magnet synchronous motors (SPMSM) and interior permanent magnet synchronous motors (IPMSM). First, we use 2D finite element analysis (FEA) to analyze models satisfying the same rated conditions according to the torque-speed curve characteristics, which are determined from the operating conditions. Next, we manufacture an SPMSM and IPMSM having good performances from an electromagnetic perspective based on analysis results, namely the cogging torque, torque ripple, and efficiency. We analyze both of the manufactured machines when they are connected back-to-back and when they are used as a motor and a generator, respectively. The motor is driven by a commercial inverter and the generator is connected to a three-phase resistance load bank. Finally, based on experimental results, which include the total harmonic distortion (THD) of the back electro-motive force (EMF), cogging torque, efficiency, and mass, we determine the motor that is most suitable under requirements.

Design of Wound Rotor Synchronous Machine for ISG and Performance Comparison with Interior Permanent Magnet Synchronous Machine (ISG용 권선형 동기기의 설계 및 IPMSM과 특성 비교)

  • Lee, Dongsu;Jeong, Yun-Ho;Jung, Sang-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.1
    • /
    • pp.37-42
    • /
    • 2013
  • This paper deals with Wound Rotor Synchronous Motor (WRSM) purposely designed for Integrated Starter and Generator (ISG) installed in 42V automotive electrical system. Not only design objective and specifications of WRSM, but its adaptive design to minimize torque ripple and back-EMF Total Harmonics Distortion (THD) are considered. Furthermore, design characteristics of designed prototype have been investigated numerically in terms of torque, back EMF, loss, and efficiency, which are verified by performance comparison with Interior Permanent Magnet Synchronous Machine based on Finite Element Analysis (FEA).

Stand-Alone Pico-Hydro Generation System using a High-Efficiency IPM Synchronous Generator

  • Kurihara, Kazumi;Kubota, Tomotsugu
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.2
    • /
    • pp.121-125
    • /
    • 2014
  • This paper presents a successful stand-alone pico-hydro generation system using a high-efficiency interior permanent-magnet (IPM) synchronous generator. A 1-kW 4-pole V-type IPM generator with low voltage regulation is used for laboratory test in stand-alone hydro energy conversion system. It has been found from experimental results that the constant output voltage is supplied stably by the proposed system under wide speed range.

Wind Power Grid Integration of an IPMSG using a Diode Rectifier and a Simple MPPT Control for Grid-Side Inverters

  • Ahmed, Tarek;Nishida, Katsumi;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.548-554
    • /
    • 2010
  • In this paper, a 1.5 kW Interior Permanent Magnet Synchronous Generator (IPMSG) with a power conditioner for the grid integration of a variable-speed wind turbine is developed. The power-conditioning system consists of a series-type 12-pulse diode rectifier powered by a phase shifting transformer and then cascaded to a PWM voltage source inverter. The PWM inverter is utilized to supply sinusoidal currents to the utility line by controlling the active and reactive current components in the q-d rotating reference frame. While the q-axis active current of the PWM inverter is regulated to follow an optimized active current reference so as to track the maximum power of the wind turbine. The d-axis reactive current can be adjusted to control the reactive power and voltage. In order to track the maximum power of the wind turbine, the optimal active current reference is determined by using a simple MPPT algorithm which requires only three sensors. Moreover, the phase angle of the utility voltage is detected using a simple electronic circuit consisting of both a zero-crossing voltage detecting circuit and a counter circuit employed with a crystal oscillator. At the generator terminals, a passive filter is designed not only to decrease the harmonic voltages and currents observed at the terminals of the IPMSG but also to improve the generator efficiency. The laboratory results indicate that the losses in the IPMSG can be effectively reduced by setting a passive filter at the generator terminals.

A Novel Region Decision Method with Mesh Adaptive Direct Search Applied to Optimal FEA-Based Design of Interior PM Generator

  • Lee, Dongsu;Son, Byung Kwan;Kim, Jong-Wook;Jung, Sang-Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1549-1557
    • /
    • 2018
  • Optimizing the design of large-scale electric machines based on nonlinear finite element analysis (FEA) requires longer computation time than other applications of FEA, mainly due to the huge size of the machines. This paper addresses a new region decision method (RDM) with mesh adaptive direct search (MADS) for the optimal design of wind generators in order to reduce the computation time. The validity of the proposed algorithm is evaluated using Rastrigin and Goldstein-Price benchmark function. Moreover, the algorithm is employed for the optimal design of a 5.6MW interior permanent magnet synchronous generator to minimize the torque ripple. Additionally, mechanical stress analysis as well as electromagnetic field analysis have been implemented to prevent breakdown caused by large centrifugal forces of the modified design.

Development of Wound Rotor Synchronous Motor for Belt-Driven e-Assist System

  • Lee, Geun-Ho;Lee, Heon-Hyeong;Wang, Qi
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.487-493
    • /
    • 2013
  • The automotive industry is showing widespread interest in belt-driven electric motor-assisted (e-Assist) systems. A belt-driven assist system (BAS) starts and assists the combustion engine in place of the conventional generator. In this study, a water-cooled wound rotor synchronous motor (WRSM) for the e-Assist system was designed and analyzed. The performance of the WRSM was compared with that of an interior permanent magnet synchronous motor (IPMSM). The WRSM efficiency can be improved for the BAS by adjusting the field flux at high speeds. The field current map to obtain the maximum efficiency based on the speed and torque was developed. To control the field flux via field current control in the WRSM, a general H-bridge circuit was added to the WRSM inverter to get the rapid current response in the high-speed region; the characteristics were compared with the chopper circuit. A WRSM developed for the belt-driven e-Assist system and a prototype 115 V power electronic converter to drive the WRSM were tested with a 900 cc combustion engine. The test results showed that the WRSM-type e-Assist system had good characteristics and could successfully start and assist the 900 cc combustion engine.

Optimal Structure Design for Improvement of Output Power and Efficiency in a Spoke-Type IPMSG for a Special Vehicle (특수차량용 Spoke Type IPMSG의 출력과 효율을 향상시키는 형상 최적설계)

  • Jeon, Hyo-Keun;Kim, Sung-An;Byun, Sang-In;Cho, Yun-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.848-849
    • /
    • 2015
  • This paper presents the structure design for optimizing output power density and efficiency to develop a spoke-type interior permanent magnet synchronous generator (IPMSG). To obtain the optimal structure, the combination of response surface method (RSM) and 2-D finite element analysis can solve the problem effectively for reducing the volume of permanent magnets (PMs) and maximizing the ratio between power density and efficiency. The effectiveness of this proposed structure design is verified by the simulation and experiment according to the comparison of the electromagnetic characteristics between the initial and modified structure.

  • PDF