• Title/Summary/Keyword: Intermetallic compounds

Search Result 310, Processing Time 0.03 seconds

A Study on Development of High Strength and Wear Resistance Intermetallic Compounds/Al Matrix Composites (고강도 내마모 금속간화합물/Al기지 복합재료의 개발을 위한 기초연구)

  • Choi, Dap-Chun;Lee, Kyung-Ku;Lee, Ho-Jong;Ghi, Whe-Bong
    • Journal of Korea Foundry Society
    • /
    • v.13 no.3
    • /
    • pp.276-284
    • /
    • 1993
  • The interfacial phenomena between intermetallic compounds and Al matrix have been studied at $680^{\circ}C$ for various holding time under argon atmosphere. Model experiments were performed using Fe, Ni and Ti wire to observe the interfacial phenomena. The interfacial phenomena between intermetallic compounds and Al matrix were analysed by optical microscope, SEM and EDX. The results of EDX and XRD showed that the interfacial zones of intermetallic compounds/Al matrix were composed of several intermetallic layers. The reaction layer was varied with holding time and heating temperature. The investigation of interfacial zones in the specimen as a function of heat treatment time at $680^{\circ}C$ indicated that the best heat treatment condition for squeeze casting was $680^{\circ}C$ for 5min.

  • PDF

Effects of Melt Super-heating on the Shape Modification of ${\beta}-AlFeSi$ Intermetallic compound in AC2B Aluminum Alloy (AC2B 알루미늄합금의 고온용해에 의한 금속간화합물 ${\beta}-AlFeSi$상 형상계량 효과)

  • Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.21 no.3
    • /
    • pp.179-186
    • /
    • 2001
  • Melt super-heating which promotes shape modification of ${\beta}$ intermetallic compounds was conducted to improve mechanical properties of recycled AC2B aluminum alloy. Modification of needle-shape ${\beta}$ intermetallic compounds was effective for the specimens of AC2B aluminum alloys containing 0.85wt.% Fe by melt super-heating, in which the melts had been held at $850^{\circ}C$ or $950^{\circ}C$ for 30 minutes respectively. Owing to the modification of needle-shape of ${\beta}$ intermetallic compounds by melt superheating of the alloy with containing 0.85wt.% Fe to $950^{\circ}C$, increases in elongation and tensile strength were prominent to be more than double and 55% respectively in comparison with the melt heated to $740^{\circ}C$. Moreover, modification of needle-shape ${\beta}$ intermetallic compounds in the alloy containing O.85wt.% Fe by $950^{\circ}C$ melt super-heating led to 48% improvement of the value of impact absorbed energy as compared with the melt heated to $740^{\circ}C$.

  • PDF

WETTING PROPERTIES AND INTERFACIAL REACTIONS OF INDIUM SOLDER

  • Kim, Dae-Gon;Lee, Chang-Youl;Hong, Tae-Whan;Jung, Seung-Boo
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.475-480
    • /
    • 2002
  • The reliability of the solder joint is affected by type and extent of the interfacial reaction between solder and substrates. Therefore, understanding of intermetallic compounds produced by soldering in electronic packaging is essential. In-based alloys have been favored bonding devices that demand low soldering temperatures. For photonic and fiber optics packaging, m-based solders have become increasingly attractive as a soldering material candidate due to its ductility. In the present work, the interfacial reactions between indium solder and bare Cu Substrate are investigated. For the identification of intermetallic compounds, both Scanning Electron Microscopy(SEM) and X-Ray Diffraction(XRD) were employed. Experimental results showed that the intermetallic compounds, such as Cu$_{11}$In$_{9}$ was observed for bare Cu substrate. Additionally, the growth rate of these intermetallic compounds was increased with the reaction temperature and time. We found that the growth of the intermetallic compound follows the parabolic law, which indicates that the growth is diffusion-controlled.d.

  • PDF

EFFECT OF INTERMETALLIC COMPOUND ON MECHANICAL PROPERTIES OF Al-Cu DISSIMILAR BRAZING JOINT

  • Koyama, Ken;Shinozaki, Kenji;Ikeda, Kenji;Kuroki, Hidenori
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.555-560
    • /
    • 2002
  • Brazing of Al to Cu using AI-Si-Mg-Bi brazing alloy has been carried out in the vacuum furnace. In the bonded interlayer, there were two kinds of intermetallic compounds. One of these intermetallic compounds was e phase and the other was b phase. The growth of b phase was controlled by diffusion Al into Cu. Deformation behavior of Al-Cu brazing joint was brittle without deformation of the base metal. Shear strength of the joint was only about 20MPa. The shear specimen broken in the intermetallic compound, which was mainly e phase. Shear strength did not depend on the bonding temperature.

  • PDF

The Effect of SiC Nanopaticles on Interface of Micro-bump manufactured by electroplating (나노입자가 전해도금으로 형성된 미세범프의 계면에 미치는 영향)

  • Sin, Ui-Seon;Lee, Se-Hyeong;Lee, Chang-U;Jeong, Seung-Bu;Kim, Jeong-Han
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.245-247
    • /
    • 2007
  • Sn-base solder bump is mainly used in micro-joining for flip chip package. The quantity of intermetallic compounds that was formed between Cu pad and solder interface importantly affects reliability. In this research, micro-bump was fabricated by two binary electroplating and the intermetallic compounds(IMCs) was estimated quantitatively. When the micro Sn-Ag solder bump was made by electroplating, SiC powder was added in the plating solution for protecting of intermetallic growth. Then, the intermetallic compounds growth was decrease with increase of amount of SiC power. However, if the mount of SiC particle exceeds 4 g/L, the effect of the growth restraint decrease rapidly.

  • PDF

Variations of Micro-Structures and Mechanical Properties of Ti/STS321L Joint Using Brazing Method (브레이징을 이용한 Ti/STS321L 접합체의 미세조직과 기계적 특성의 변화)

  • 구자명;정우주;한범석;권상철;정승부
    • Journal of Welding and Joining
    • /
    • v.20 no.6
    • /
    • pp.106-106
    • /
    • 2002
  • This study investigated variations of micro-structures and mechanical properties of Ti / STS321L joint with various bonding temperature and time using brazing method. According to increasing bonding temperature and time, it was observed that the thickness of their reaction layer increased due So increasing diffusion rate and time. From the EPMA results, Ti diffused to the STS321L substrate according to increasing bending time to 30min. Hardness of bonded interface increased with increasing bonding temperature and time due to increasing their oxides and intermetallic compounds. XRD data indicated that Ag, Ag-Ti intermetallic compounds, TiAg and Ti₃Ag and titanium oxide, TiO₂were formed in interface. In tensile test, it was found that the tensile strength had a maximum value at the bonding temperature of 900℃ and time of 5min, and tensile strength decreased over bonding time of 5min. The critical thickness of intermetallic compounds was observed to about 30㎛, because of brittleness from their excessive intermetallic compounds and titanium oxide, and weakness from void.

Variations of Micro-Structures and Mechanical Properties of Ti/STS321L Joint Using Brazing Method (브레이징을 이용한 Ti/STS321L 접합체의 미세조직과 기계적 특성의 변화)

  • 구자명;정우주;한범석;권상철;정승부
    • Journal of Welding and Joining
    • /
    • v.20 no.6
    • /
    • pp.830-837
    • /
    • 2002
  • This study investigated variations of micro-structures and mechanical properties of Ti / STS321L joint with various bonding temperature and time using brazing method. According to increasing bonding temperature and time, it was observed that the thickness of their reaction layer increased due So increasing diffusion rate and time. From the EPMA results, Ti diffused to the STS321L substrate according to increasing bending time to 30min. Hardness of bonded interface increased with increasing bonding temperature and time due to increasing their oxides and intermetallic compounds. XRD data indicated that Ag, Ag-Ti intermetallic compounds, TiAg and $Ti_3Ag$ and titanium oxide, $TiO_2$ were formed in interface. In tensile test, it was found that the tensile strength had a maximum value at the bonding temperature of $900^{\circ}C$ and time of 5min, and tensile strength decreased over bonding time of 5min. The critical thickness of intermetallic compounds was observed to about $30\mu\textrm{m}$, because of brittleness from their excessive intermetallic compounds and titanium oxide, and weakness from void.

Weldability of SUS304 and Ti Dissimilar Welds with Various Welding Speed using Single Mode Fiber Laser (싱글모드 파이버 레이저를 이용한 SUS304와 Ti 이종재료의 용접속도에 따른 용접특성)

  • Lee, Su-Jin;Katayama, Seiji;Kim, Jong-Do
    • Journal of Welding and Joining
    • /
    • v.31 no.5
    • /
    • pp.64-70
    • /
    • 2013
  • The joining of Ti and SUS304 dissimilar metals is one of the effective measures to save rare metal. But Ti and SUS304 have differences in materials properties, and Ti and Fe intermetallic compounds such as TiFe and $TiFe_2$ are easily formed in weld fusion zone between Ti and SUS304. Nevertheless, in this study, full penetration lap dissimilar welding of Ti and SUS304 using single-mode fiber laser with ultra-high welding speed was tried, and it was found out that ultra-high welding speed could control the generation of intermetallic compound. To recognize the formation of intermetallic phase in the weld fusion zone and the compound zone of interface weld area were observed and analyzed using energy dispersive X-ray spectroscopy (EDX). And it was confirmed that the ultra-high welding speed could reduce amount of intermetallic compounds, but the intermetallic compounds were existed in the weld fusion zone under the all conditions.

A Study on the Soldering Characteristic of 4 Bus Bar Crystalline Silicon Solar Cell on Infrared Lamp and Hot Plate Temperature Control (적외선 램프 및 핫 플레이트 온도 제어를 통한 4 Bus Bar 결정질 실리콘 태양전지 솔더링 특성에 관한 연구)

  • Lee, Jung Jin;Son, Hyoung Jin;Kim, Seong Hyun
    • Current Photovoltaic Research
    • /
    • v.5 no.3
    • /
    • pp.83-88
    • /
    • 2017
  • The growth of intermetallic compounds is an important factor in the reliability of solar cells. Especially, the temperature change in the soldering process greatly affects the thickness of the intermetallic compound layer. In this study, we investigated the intermetallic compound growth by Sn-diffusion in solder joints of solar cells. The thickness of the intermetallic compound layer was analyzed by IR lamp power and hot plate temperature control, and the correlation between the intermetallic compound layer and the adhesive strength was confirmed by a $90^{\circ}$ peel test. In order to investigate the growth of the intermetallic compound layer during isothermal aging, the growth of the intermetallic compound layer was analyzed at $85^{\circ}C$ and 85% for 500 h. In addition, the activation energy of Sn was calculated. The diffusion coefficient of the intermetallic compound layer was simulated and compared with experimental results to predict the long-term reliability.

Ni-Al Based Intermetallics Coating Through SHS using the Heat of Molten Aluminum (알루미늄 주물 위 용탕열을 이용한 N-Al계 금속간화합물의 연소합성 코팅)

  • Lee, Han-Young;Cho, Yong-Jae
    • Journal of Korea Foundry Society
    • /
    • v.31 no.2
    • /
    • pp.83-86
    • /
    • 2011
  • Ni-Al based intermetallic compounds of self-propagating high-temperature synthesis (SHS) by the heat of molten aluminum and been coated on the aluminum casting alloy. The effects of the pouring temperature in casting and the thickness of casting substrate on SHS of the coating layer have been investigated. The experimental result showed that the reaction of the coating layer was activated with increasing the pouring temperature in casting and the thickness of casting substrate. However, the aluminum substrate was re-melted by the heat of formation for intermetallic compounds. Then, it was considered that some mechanical or thermal treatments for elemental powder mixtures were required to control the heat of formation for intermetallic compounds in advance.