• Title/Summary/Keyword: Internal defects

Search Result 504, Processing Time 0.042 seconds

The Nondestructive Reliability Evaluation which it Applies Ultrasound Thermography about Cutting Crack of Piston Skirt (초음파 서모그래피를 적용한 피스톤 스커트 절단균열에 대한 비파괴 신뢰성 평가)

  • Yang, Yong-Ha;Ma, Sang-Dong;Kim, Jea-Yeol
    • Tribology and Lubricants
    • /
    • v.26 no.6
    • /
    • pp.336-340
    • /
    • 2010
  • Ultrasound thermography detects defects by radiating 20 ~ 30 kHz ultrasound waves to the samples and capturing the heat generated from the defects with the use of an infrared thermographic camera. This technology is being spotlighted as a next-generation NDE for the automobile and aerospace industries because it can test large areas and can detect defects such as cracks and exfoliations in real time. The heating mechanism of the ultrasound vibration has not been accurately determined, but the thermomechanical coupling effect and the surface or internal friction are estimated to be the main causes. When this heat is captured by an infrared thermographic camera, the defects inside or on the surface of objects can be quickly detected. Although this technology can construct a testing device relatively simply and can detect defects within a short time, there are no reliable data about the factors related to its detection ability. In this study, the ultrasound thermography technique was used to manufacture gasoline and diesel engine piston specimens, and nondestructive reliability tests to verify the applicability and validity of the ultrasound thermography technique.

Visualization and classification of hidden defects in triplex composites used in LNG carriers by active thermography

  • Hwang, Soonkyu;Jeon, Ikgeun;Han, Gayoung;Sohn, Hoon;Yun, Wonjun
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.803-812
    • /
    • 2019
  • Triplex composite is an epoxy-bonded joint structure, which constitutes the secondary barrier in a liquefied natural gas (LNG) carrier. Defects in the triplex composite weaken its shear strength and may cause leakage of the LNG, thus compromising the structural integrity of the LNG carrier. This paper proposes an autonomous triplex composite inspection (ATCI) system for visualizing and classifying hidden defects in the triplex composite installed inside an LNG carrier. First, heat energy is generated on the surface of the triplex composite using halogen lamps, and the corresponding heat response is measured by an infrared (IR) camera. Next, the region of interest (ROI) is traced and noise components are removed to minimize false indications of defects. After a defect is identified, it is classified as internal void or uncured adhesive and its size and shape are quantified and visualized, respectively. The proposed ATCI system allows the fully automated and contactless detection, classification, and quantification of hidden defects inside the triplex composite. The effectiveness of the proposed ATCI system is validated using the data obtained from actual triplex composite installed in an LNG carrier membrane system.

Vulvar Reconstruction Using Keystone Flaps Based on the Perforators of Three Arteries

  • Yunjae Lee;Sanghun Lee;Dongkyu Lee;Hyeonjung Yeo;Hannara Park;Hyochun Park
    • Archives of Plastic Surgery
    • /
    • v.49 no.6
    • /
    • pp.724-728
    • /
    • 2022
  • Various flaps are used to reconstruct skin and soft tissue defects of the vulva following resection of malignancies. Whenever possible, reconstruction using local flaps is the standard treatment. Here, we describe vulvar defect reconstruction using keystone flaps. Standard keystone flaps are based on randomly located vascular perforators. However, we designed a keystone flap that includes perforators of three named arteries (the anterior labial artery of the external pudendal artery, cutaneous branches of the obturator artery, and posterior labial artery of the internal pudendal artery) and the pudendal nerve, which accompanies the internal pudendal artery. Four patients with squamous cell carcinoma and extramammary Paget's disease of the vulva underwent radical vulvectomy and keystone flaps including perforators of three arteries. Depending on the morphology of the defects, keystone flaps were used with different designs. For elliptical and unilateral vulvar defects, a standard keystone flap was designed, and for defects on both sides of the vulva, a double opposing keystone flap was used. For oval defects, the omega variant keystone flap was designed, and when the morphology of the defect needed rotation of the flap, a rotational keystone flap was designed. All the patients showed good function and sensation, with an acceptable cosmetic appearance.

Internal Defect Analysis of Transformers using DGA (유중가스분석을 통한 변압기 내부결함 분석)

  • Kim, Seong-Hwan;Park, Tae-Sik
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.354-359
    • /
    • 2020
  • DGA(Dissolved Gas Analysis) is regularly performed to detect internal defects of power transformers and prevent failures. The overheating or discharging in the transformer can be confirmed by DGA but the defective parts should be identified by internal inspection. However, winding or iron core defects cannot be checked by internal inspection, so it is impossible to establish actions by DGA alone. In this paper, the internal defect mode is analyzed and presented based on the transformer internal inspection reports, and the internal defect can be predicted by considering DGA.

Effects of Drying Temperature on Internal Temperature, Drying Rate and Drying Defects for Japanese Larch in High-Temperature Drying (일본잎갈나무 정각재(正角材)의 고온건조(高溫乾燥) 온도(溫度)가 내부온도(內部溫度), 건조속도(乾燥速度) 및 건조결함(乾燥缺陷)에 미치는 영향(影響))

  • Lee, June-Ho;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.99-107
    • /
    • 1997
  • This study was executed to test the possibility of replacement for domestic Japanese larch(Larix leptolepis) for hardwoods and to acquire the information about the effects of drying temperature on internal temperature, moisture content and drying defects. In high-temperature drying, internal temperature increased rapidly to boiling point, immediately after that point the internal temperature rising rate was reduced. In the case of drying at temperature of $125^{\circ}C$, internal temperature could reach at boiling point in a very short time. Moisture content in high-temperature drying showed constant drying rate period and first period of falling rate drying together in 4 hours since experiment begun. There was no strong correlation between initial moisture content and final moisture content. Average drying rate at $115^{\circ}C$, $120^{\circ}C$ and $125^{\circ}C$ was 1.42%/hr, 1.88%/hr and 2.02%/hr, respectively; the case of drying temperature of $125^{\circ}C$ showed most rapid drying rate. Drying rate of $125^{\circ}C$ was so rapid that it showed more severe shrinkage, bow, collapse, end check, and internal check development than in other drying conditions. The result of this study showed the strong possibility of high-temperature drying for Japanese larch, and to dry Japanese larch optimally, dry bulb temperature should not exceed $120^{\circ}C$.

  • PDF

Ultrasonic Inspection of Internal Defects of Potatoes (초음파를 이용한 감자의 내부결함검사)

  • Kim, In-Hoon;Jung, Kyu-Hong;Jang, Kyung-Young;Seo, Ryun;Kim, Man-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.82-88
    • /
    • 2003
  • The nondestructive internal quality evaluation of agricultural products has been strongly required from the needs for individual inspection. Recently, the ultrasonic wave has been considered as a solution fur this problem, and an ultrasonic system was constructed for the ultrasonic NDE of fruits and vegetables in our previous work. In this paper, the practical applicability of our ultrasonic system is tested fur the inspection of internal defects (central cavity) in Atlantic potato. Sound speed and RMS of transmitted ultrasonic wave signal were measured and classification algorithm using 2 dimensional stochastic analysis. was presented. Experimental results showed greater value of sound speed and RMS (root mean square) of transmitted signal in normal samples than in abnormal samples with cavity. Also a stochastic method to distinguish normal and abnormal showed fault detection rate less than 5%.

Reliability of Non-invasive Sonic Tomography for the Detection of Internal Defects in Old, Large Trees of Pinus densiflora Siebold & Zucc. and Ginkgo biloba L. (노거수 내부결함 탐지를 위한 비파괴 음파단층촬영의 신뢰성 분석(소나무·은행나무를 중심으로))

  • Son, Ji-Won;Lee, Gwang-Gyu;An, Yoo-Jin;Shin, Jin-Ho
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.5
    • /
    • pp.535-549
    • /
    • 2022
  • Damage to forests, such as broken or falling trees, has increased due to the increased intensity and frequency of abnormal climate events, such as strong winds and heavy rains. However, it is difficult to respond to them in advance based on prediction since structural defects such as cavities and bumps inside trees are difficult to identify with a visual inspection. Non-invasive sonic tomography (SoT) is a method of estimating internal defects while minimizing physical damage to trees. Although SoT is effective in diagnosing internal defects, its accuracy varies depending on the species. Therefore, it is necessary to analyze the reliability of its measurement results before applying it in the field. In this study, we measured internal defects in wood by cross-applying destructive resistance micro drilling on old Pinus densifloraSiebold & Zucc. and Ginkgo bilobaL., which are representative tree species in Korea, to verify the reliability of SoT and compared the evaluation results. The t-test for the mean values of the defect measurement between the two groups showed no statistically significant difference in pine trees and some difference in ginkgo trees. Linear regression analysis results showed a positive correlation with an increase in defects in SoT images when the defects in the drill resistance graph increased in both species.

Correlation Analysis of Rail Surface Defects and Rail Internal Cracks (레일표면결함과 레일내부균열의 상관관계 분석)

  • Jung-Youl Choi;Jae-Min Han;Young-Ki Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.585-590
    • /
    • 2024
  • In this study, rail surface defects are increasing due to the aging of urban railway rails, but in the detailed guidelines for track performance evaluation established by the country, rail surface damage is inspected with the naked eye of engineers and simple measuring tools. With the recent enactment of the Track Diagnosis Act, a large budget has been invested and the volume of rail diagnosis is rapidly increasing, but it is difficult to secure the reliability of diagnosis results using labor-intensive visual inspection techniques. It is very important to discover defects in the rail surface through periodic track tours and visual inspection. However, evaluating the severity of defects on the rail surface based on the subjective judgment of the inspector has significant limitations in predicting damage inside the rail. In this study, the rail internal crack characteristics due to rail surface damage were studied. In field measurements, rail surface damage locations were selected, samples of various damage types were collected, and the rail surface damage status was evaluated. In indoor testing, we intend to analyze the correlation between rail surface defects and internal defects using a electron scanning microscope (SEM). To determine the crack growth rate of urban railway rails currently in use, the Gaussian probability density function was applied and analyzed.

Nondestructive Contactless Sensing of Concrete Structures using Air-coupled Sensors

  • Shin, Sung-Woo;Hall, Kerry S.;Popovics, John S.
    • International Journal of Safety
    • /
    • v.7 no.2
    • /
    • pp.17-22
    • /
    • 2008
  • Recent developments in contactless, air-coupled sensing of seismic and ultrasonic waves in concrete structures are presented. Contactless sensing allows for rapid, efficient and consistent data collection over a large volume of material. Two inspection applications are discussed: air-coupled impact-echo scanning of concrete structures using seismically generated waves, and air-coupled imaging of internal damages in concrete using ultrasonic tomography. The first application aims to locate and characterize shallow delamination defects within concrete bridge decks. Impact-echo method is applied to scan defected concrete slabs using air coupled sensors. Next, efforts to apply air-coupled ultrasonic tomography to concrete damage imaging are discussed. Preliminary results are presented for air-coupled ultrasonic tomography applied to solid elements to locate internal defects. The results demonstrate that, with continued development, air-coupled ultrasonic tomography may provide improved evaluation of unseen material defects within structures.