• Title/Summary/Keyword: Interrupted flow model

Search Result 35, Processing Time 0.026 seconds

DEVELOPMENT OF MATDYMO(MULTI-AGENT FOR TRAFFIC SIMULATION WITH VEHICLE DYNAMICS MODEL) II: DEVELOPMENT OF VEHICLE AND DRIVER AGENT

  • Cho, K.Y.;Kwon, S.J.;Suh, M.W.
    • International Journal of Automotive Technology
    • /
    • v.7 no.2
    • /
    • pp.145-154
    • /
    • 2006
  • In the companion paper, the composition and structure of the MATDYMO (Multi-Agent for Traffic Simulation with Vehicle Dynamic Model) were proposed. MATDYMO consists of the road management system, the vehicle motion control system, the driver management system, and the integration control system. Among these systems, the road management system and the integration control system were discussed In the companion paper. In this paper, the vehicle motion control system and the driver management system are discussed. The driver management system constructs the driver agent capable of having different driving styles ranging from slow and careful driving to fast and aggressive driving through the yielding index and passing index. According to these indices, the agents pass or yield their lane for other vehicles; the driver management system constructs the vehicle agents capable of representing the physical vehicle itself. A vehicle agent shows its behavior according to its dynamic characteristics. The vehicle agent contains the nonlinear subcomponents of engine, torque converter, automatic transmission, and wheels. The simulation is conducted for an interrupted flow model and its results are verified by comparison with the results from a commercial software, TRANSYT-7F. The interrupted flow model simulation is implemented for three cases. The first case analyzes the agents' behaviors in the interrupted flow model and it confirms that the agent's behavior could characterize the diversity of human behavior and vehicle well through every rule and communication frameworks. The second case analyzes the traffic signals changed at different intervals and as the acceleration rate changed. The third case analyzes the effects of the traffic signals and traffic volume. The results of these analyses showed that the change of the traffic state was closely related with the vehicle acceleration rate, traffic volume, and the traffic signal interval between intersections. These simulations confirmed that MATDYMO can represent the real traffic condition of the interrupted flow model. At the current stage of development, MATDYMO shows great promise and has significant implications on future traffic state forecasting research.

DEVELOPMENT OF MATDYMO (MULTI-AGENT FOR TRAFFIC SIMULATION WITH VEHICLE DYNAMICS MODEL) I: DEVELOPMENT OF TRAFFIC ENVIRONMENT

  • CHOI K. Y.;KWON S. J.;SUH M. W.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.25-34
    • /
    • 2006
  • For decades, simulation technique has been well validated in areas such as computer and communication systems. Recently, the technique has been much used in the area of transportation and traffic forecasting. Several methods have been proposed for investigating complex traffic flows. However, the dynamics of vehicles and diversities of driver characteristics have never been considered sufficiently in these methods, although they are considered important factors in traffic flow analysis. In this paper, we propose a traffic simulation tool called Multi-Agent for Traffic Simulation with Vehicle Dynamics Model (MATDYMO). Road transport consultants, traffic engineers and urban traffic control center managers are expected to use MATDYMO to efficiently simulate traffic flow. MATDYMO has four sub systems: the road management system, the vehicle motion control system, the driver management system, and the integration control system. The road management system simulates traffic flow for various traffic environments (e.g., multi-lane roads, nodes, virtual lanes, and signals); the vehicle motion control system constructs the vehicle agent by using various vehicle dynamic models; the driver management system constructs the driver agent capable of having different driving styles; and lastly, the integrated control system regulates the MATDYMO as a whole and observes the agents running in the system. The vehicle motion control system and driver management system are described in the companion paper. An interrupted and uninterrupted flow model were simulated, and the simulation results were verified by comparing them with the results from a commercial software, TRANSYT-7F. The simulation result of the uninterrupted flow model showed that the driver agent displayed human-like behavior ranging from slow and careful driving to fast and aggressive driving. The simulation of the interrupted flow model was implemented as two cases. The first case analyzed traffic flow as the traffic signals changed at different intervals and as the turning traffic volume changed. Second case analyzed the traffic flow as the traffic signals changed at different intervals and as the road length changed. The simulation results of the interrupted flow model showed that the close relationship between traffic state change and traffic signal interval.

Vehicle Running Characteristics for Interrupted Traffic Flow by Using Cellular Automata (CA 모델을 활용한 단속류에서의 차량주행 특성)

  • Jung, Kwangsu;Do, Myungsik;Lee, Jongdal;Lee, Yongdoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.6
    • /
    • pp.31-39
    • /
    • 2012
  • This study aims to suggest a methodology of localizing and calibrating parameters, such as acceleration, deceleration, and lane changing which are the basis of car following model in interrupted traffic flow to overcome the limitation of origin and destination based transportation simulation and to verify the application of activity-based model for use in Korean roadway condition in a large scale area or a city. Especially, we figured out that a proper cell size reflecting Korean traffic conditions is 1.0m rather than 7.5m which is default size and a methodology of tracking vehicle behavior characteristics through tracking vehicle ID is suggested on this study. In addition, vehicle running characteristics in real interrupted traffic flow is analyzed through subdividing vehicle types and updating vehicle type ratio. For verification of suggested model, some portion of Dalgubyul-ro in the Daegu city is tested, and the possibility of realization of interrupted traffic flow in simulation is studied.

A Study on the Modification Value for Estimation of Traveling Speed During Rainfall in Interrupted Traffic Flow (단속교통류에서 강우시 평균통행속도 산정을 위한 보정계수에 관한 연구)

  • Mo, Moo Ki;Lee, Seung Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.5
    • /
    • pp.837-844
    • /
    • 2017
  • Generally, V/C ratio in uninterrupted traffic flow and average travel speed in interrupted traffic flow are utilized as measure of effect for assessing operational situation of roads. The set of road conditions and traffic conditions are considered to be major variables for assessing operational situation in the traffic flow. However, weather conditions such as rainfall also affect the operational situation of roads. The studies reflected by the rainy situation are conducted in the uninterrupted flow, but the related studies are insufficient in the interrupted flow. In this study, the modification factors during rainfall in the interrupted flow were suggested, and the factors could be used when calculating the average travel speed during rainfall in the interrupted flow. By utilizing the data that were investigated in the same road and traffic conditions and the different weather conditions (rainy day or clear day), the modification factors were founded on regression analysis of the travel speed during rainfall as a dependent variable. Modification factors was suggested in dividing peak time, non-peak time, and whole period. Based on this study, the modification factors can be used to complementing the average travel speed model for assessing the operational situation of urban streets during rainfall.

A Study on the Traffic Effect Zone and Application of Road Occupying Construction (도로 공사중의 교통영향권역 설정 및 적용성에 관한 연구)

  • Lee, Ju-Ho;Lee, Young-Woo;Lim, Chae-Moon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.2
    • /
    • pp.131-139
    • /
    • 2003
  • The links operating interrupted flow are intend to yield the traffic between the out flow and inflow part effect zone of street section, we build the delay model using the time gap between under construction and not. We review the applicability of interrupted flow, and thus we can put this data to practical use as the basis data to compute the inducement charge for traffic delay. Also building about traffic effect zone of interrupted flow wouldn't produce at the section beside occupying roads and construction cross section, thus we must review the plan to minimize traffic delay by the construction occupying road. In future there must be advanced the incomplete in this study, and groping for the various alternatives to minimize the traffic delay by the road occupying construction, with developing the various sets of detailed analyzing models, that is analysis on the street strength, crossroads geometrical forms of crossroads, public traffics, pedestrians, occupying types.

  • PDF

A Development of Macroscopic Simulation Model for Interrupted Flow using Shockwave (충격파를 이용한 거시적 단속류 시뮬레이션 모형개발)

  • Lee, Ho-Sang;Jung, Young-Je;Kim, Young-Chan;Kim, Dae-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.1
    • /
    • pp.191-201
    • /
    • 2008
  • It has been employed TRANSYT-7F and NETSIM to evaluate the validity and effectiveness of improvement on TSM(Transportation Systems Management). But T7F is hard to describe platoon compression and dispersion in actually, and NETSIM takes a long time for network coding, calibration and have difficulty in setting up saturation flow. While Shockwave Model have advantage which can describe platoon compression and dispersion in actually and shorten hours, convenience of application. But Shockwave Model apply unrealistic traffic flow relation ship(U-K curve) and simplify platoon because of difficulty in calculating shockwave's position and cross. For solving limitation of existing shockwave models, It develop new model with 2-regime linear model, New platoon model, Extended shockwave, etc. For verifying the validity of the proposed model, it was compared with delay of T7F and NETSIM by offset variation. In conclusion, it is thought that proposed model have outstanding performance to simulate traffic phenomenon.

Novel Approach to Analytical Jitter Modeling

  • Huremovic, Adnan;Hadzialic, Mesud
    • Journal of Communications and Networks
    • /
    • v.17 no.5
    • /
    • pp.534-540
    • /
    • 2015
  • In this paper we propose an analytical model for jitter, wherein we implement the interrupted Poisson process (IPP) for incoming traffic. First, we obtain an analytical model for the jitter on one node with respect to the phase probabilities, traffic load, and tagged traffic share in the aggregate traffic flow. Then, we analyze N-node cases, and propose a model for end-to-end jitter. Our analysis leads to some fast-to-compute approximations that can be used for future network design or admission control. Finally, we validate our analytical results by comparing them with previous results for limit cases, as well as with event-driven simulations. We propose the use of our results as guidelines for jitter evaluation of real IP traffic.

A Study on the Optimal Aggregation Interval for Travel Time Estimation on the Rural Arterial Interrupted Traffic flow (지방부 간선도로 단속류 통행시간 추정을 위한 적정 집락간격 결정에 관한 연구)

  • Lim Houng-Seak;Lee Seung-Hwan;Lee Hyun-Jae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.3 no.2 s.5
    • /
    • pp.129-140
    • /
    • 2004
  • In this paper, we conduct the research about optimal aggregation interval of travel time data on interrupted traffic flow and verify the reliability of AVI collected data by using car plate matching method in RTMS for systematic collection and analysis of link travel time data on interrupted traffic flow rural arterial. We perform Kolmosorov-Smirnov test on AVT collected sample data and on entire population data, and conclude that the sample data does not represent pure random sampling and hence includes sample collection error. We suggest that additional review is necessary to investigate the effectiveness of AVI collected sample data as link representative data. We also develop statistical model by applying two estimation techniques namely point estimation and interval estimation for calculating optimal aggregation interval. We have implemented our model and determine that point estimate is preferable over interval estimate for exactly selecting and deciding optimal aggregation interval. Our final conclusion is that 5-minute aggregation interval is optimal to estimate travel time in RTMS, as is currently being used our investigation is based on AVI data collected from Yang-ji to Yong-in $42^{nd}$ National road.

  • PDF

Travel Time Forecasting in an Interrupted Traffic Flow by adopting Historical Profile and Time-Space Data Fusion (히스토리컬 프로파일 구축과 시.공간 자료합성에 의한 단속류 통행시간 예측)

  • Yeo, Tae-Dong;Han, Gyeong-Su;Bae, Sang-Hun
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.2
    • /
    • pp.133-144
    • /
    • 2009
  • In Korea, the ITS project has been progressed to improve traffic mobility and safety. Further, it is to relieve traffic jam by supply real time travel information for drivers and to promote traffic convenience and safety. It is important that the traffic information is provided accurately. This study was conducted outlier elimination and missing data adjustment to improve accuracy of raw data. A method for raise reliability of travel time prediction information was presented. We developed Historical Profile model and adjustment formula to reflect quality of interrupted flow. We predicted travel time by developed Historical Profile model and adjustment formula and verified by comparison between developed model and existing model such as Neural Network model and Kalman Filter model. The results of comparative analysis clarified that developed model and Karlman Filter model similarity predicted in general situation but developed model was more accurate than other models in incident situation.

A Study on Applicability of TRANSIMS to Interrupted Traffic Flow at Road Segments in Urban Area (TRANSIMS의 단속류 네트워크 적용 가능성에 대한 연구)

  • Jung, Kwnagsu;Do, Myungsik;Lee, Jongdal;Lee, Yongdoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1131-1142
    • /
    • 2013
  • This study aims to verify the applicability of TRANSIMS (TRansportion ANalysis SIMulation System) in interrupted traffic flow through calibration and validation process based on observation data; such as headway, traffic volume, speed, and travel time from Dalguberl Boulevard in Dae-gu metropolitan city. On this study, several micro-simulation parameters are derived from the calibration and validation process through performing a headway comparison and applying an ID back tracking methodology. As a result, it is figured out that actual circumstances of Korean roadway; for example, traffic volume per lane, speed, and travel time, can be applied on the TRANSIMS. Especially, it was possible to find out the influence of cell size parameter to traffic flow characteristic of simulation. However, it is hard to conclude that TRANSIMS is applicable to Korean roadway environment with studying particular target area. Therefore, additional studies; such as more case studies with various types of road, signal, and land use, will be required to localize TRANSIMS to Korea.