• Title/Summary/Keyword: Intestinal morphology

Search Result 185, Processing Time 0.029 seconds

Microencapsulated basil oil (Ocimum basilicum Linn.) enhances growth performance, intestinal morphology, and antioxidant capacity of broiler chickens in the tropics

  • Thuekeaw, Sureerat;Angkanaporn, Kris;Nuengjamnong, Chackrit
    • Animal Bioscience
    • /
    • v.35 no.5
    • /
    • pp.752-762
    • /
    • 2022
  • Objective: Microencapsulation is a technique to improve stability, bioavailability, and controlled release of active ingredients at a target site. This experiment aimed to investigate the effects of microencapsulated basil oil (MBO) on growth performance, apparent ileal digestibility (AID), jejunal histomorphology, bacterial population as well as antioxidant capacity of broiler chickens in a tropical climate. Methods: A total of 288 one-day-old female broilers (Ross 308) were randomly allocated into 4 groups (6 replicates of 12 birds), based on a completely randomized design. Dietary treatments were as follows: i) basal diet (NC), ii) basal diet with avilamycin at 10 ppm (PC), iii) basal diet with free basil oil (FBO) at 500 ppm, and iv) basal diet with MBO at 500 ppm, respectively. Results: Dietary supplementation of MBO improved average daily gain, and feed conversion ratio of broilers throughout the 42-d trial period (p<0.05), whereas MBO did not affect average daily feed intake compared with NC group. The broilers fed MBO diet exhibited a greater AID of crude protein and gross energy compared with those in other groups (p<0.05). Lactobacillus spp. and Escherichia coli populations were not affected by feeding dietary treatments. Both FBO and MBO had positive effects on jejunal villus height (VH), villus height to crypt depth ratio (VH:CD) and villus surface area of broilers compared to NC and PC groups (p<0.05). Superoxide dismutase level in the duodenal mucosa of MBO group was significantly increased (p<0.01), whereas malondialdehyde level was significantly decreased (p<0.01). Conclusion: Microencapsulation could be considered as a promising driver of the basil oil efficiency, consequently MBO at 500 ppm could be potentially used as a feed additive for improvement of intestinal integrity and nutrient utilization, leading to better performance of broiler chickens.

The effect of Acacia nilotica bark extract on growth performance, carcass characteristics, immune response, and intestinal morphology in broilers as an alternative to antibiotic growth promoter

  • Muhammad Umer Zahid;Anjum Khalique;Shafqat Nawaz Qaisrani;Muhammad Ashraf;Ali Ahmad Sheikh;Muhammad Umar Yaqoob
    • Animal Bioscience
    • /
    • v.36 no.7
    • /
    • pp.1059-1066
    • /
    • 2023
  • Objective: Present study was designed to evaluate the efficacy of Acacia nilotica bark extract as an alternative to antibiotic growth promoters in broilers. Methods: Six hundred, day-old broiler chicks were randomly divided into six groups (NC, without any supplementation; AB, NC+Zinc Bacitracin; PB, NC+Safmannan; ANBE1, NC+A. nilotica bark extract 0.1%; ANBE3, NC+A. nilotica bark extract 0.3%; ANBE5, NC+A. nilotica bark extract 0.5%), with ten replicates per group (10 chicks/replicate) and feeding trial was lasted for 35 days. Results: Results showed that weight gain (1,296.63 g) and feed conversion ratio (FCR, 1.59) of AB was better than NC, during the finisher phase. Overall FCR of AB (1.53), PB (1.54), and ANBE5 (1.54) was significantly (p<0.05) better than NC. From carcass parameters relative weight of wing and heart were highest in ANBE3 (2.5% and 1.51%, respectively). Significantly (p<0.05) highest blood glucose level was observed in NC (264.5 mg/dL) and highest albumin concentration was found in AB (1.46 mg/dL). In addition, antibody titer levels against ND and IBD were higher in ANBE5 than NC, while higher relative weight of bursa was observed in ANBE3 than NC. The villus height to crypt depth ratio in all experimental groups was better than NC. Conclusion: Acacia nilotica bark extract could be a suitable alternative to antibiotic growth promoters to support the growth in broilers.

Black soldier fly larvae meal supplementation in a low protein diet reduced performance, but improved nitrogen efficiency and intestinal morphology of duck

  • Rinanti Eka Aldis;Muhlisin Muhlisin;Zuprizal Zuprizal;Heru Sasongko;Chusnul Hanim;Muhsin Al Anas
    • Animal Bioscience
    • /
    • v.37 no.4
    • /
    • pp.678-688
    • /
    • 2024
  • Objective: Reduced crude protein (CP) diets offer potential benefits such as optimized feed efficiency, reduced expenses, and lower environmental impact. The objective of this study was to evaluate black soldier fly larvae (BSFL) meal on a low-protein diet for duck performance, blood biochemical, intestinal morphology, gastrointestinal development, and litter. Methods: The experiment was conducted for 42 days. A total of 210-day-old male hybrid ducklings (5 replicate pens, 7 ducks per pen) were randomly assigned to 6 dietary treatments (3×2 factorial arrangements) in randomized design. The factors were CP level (18%, 16%, 14%) and protein source feed soybean meals (SBM), black soldier fly larvae meals (BSFLM). Results: Reduced dietary CP levels significantly decreased growth performance, feed intake, the percentage of nitrogen, pH (p<0.05), and tended to suppress ammonia in litter (p = 0.088); increased lipid concentration; and enhanced relative weight of gastrointestinal tracts (p<0.05). In addition, dietary BSFL as a source of protein feed significantly increased lipid concentration and impacted lowering villus height and crypt depth on jejunum (p<0.05). Conclusion: In conclusion, the use of BSFLM in a low-protein diet was found to have a detrimental effect on growth performance. However, the reduction of 2% CP levels in SBM did not have a significant impact on growth performance but decreased nitrogen and ammonia concentrations.

Dietary corn resistant starch regulates intestinal morphology and barrier functions by activating the Notch signaling pathway of broilers

  • Zhang, Yingying;Liu, Yingsen;Li, Jiaolong;Xing, Tong;Jiang, Yun;Zhang, Lin;Gao, Feng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.12
    • /
    • pp.2008-2020
    • /
    • 2020
  • Objective: This study was conducted to investigate the effects of dietary corn resistant starch (RS) on the intestinal morphology and barrier functions of broilers. Methods: A total of 320 one-day-old broilers were randomly allocated to 5 dietary treatments: one normal corn-soybean (NC) diet, one corn-soybean-based diet supplementation with 20% corn starch (CS), and 3 corn-soybean-based diets supplementation with 4%, 8%, and 12% corn resistant starch (RS) (identified as 4% RS, 8% RS, and 12% RS, respectively). Each group had eight replicates with eight broilers per replicate. After 21 days feeding, one bird with a body weight (BW) close to the average BW of their replicate was selected and slaughtered. The samples of duodenum, jejunum, ileum, caecum digesta, and blood were collected. Results: Birds fed 4% RS, 8% RS and 12% RS diets showed lower feed intake, BW gain, jejunal villus height (VH), duodenal crypt depth (CD), jejunal VH/CD ratio, duodenal goblet cell density as well as mucin1 mRNA expressions compared to the NC group, but showed higher concentrations of cecal acetic acid and butyric acid, percentage of jejunal proliferating cell nuclear antigen-positive cells and delta like canonical Notch ligand 4 (Dll4), and hes family bHLH transcription factor 1 mRNA expressions. However, there were no differences on the plasma diamine oxidase activity and D-lactic acid concentration among all groups. Conclusion: These findings suggested that RS could suppress intestinal morphology and barrier functions by activating Notch pathway and inhibiting the development of goblet cells, resulting in decreased mucins and tight junction mRNA expression.

Effects of Single Cell Protein Replacing Fish Meal in Diet on Growth Performance, Nutrient Digestibility and Intestinal Morphology in Weaned Pigs

  • Zhang, H.Y.;Piao, X.S.;Li, P.;Yi, J.Q.;Zhang, Q.;Li, Q.Y.;Liu, J.D.;Wang, G.Q.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.9
    • /
    • pp.1320-1328
    • /
    • 2013
  • Three experiments were conducted to evaluate the ME value, standardized ileal digestibility (SID) of amino acids (AA) of fish meal, and the effects of single cell protein (Prosin and Protide) replacing fish meal in diet on growth performance, nutrient digestibility and intestinal morphology in weaned piglets. In Exp. 1, twenty-four barrows with initial BW of $30.8{\times}2.6kg$ were allotted to one of four dietary treatments. Diet 1 contained corn as the only energy source. The other three diets replaced 20% of the corn in diet 1 with one of the three protein feeds (fish meal, Prosin and Protide), and the DE and ME contents were determined by difference. In Exp. 2, eight barrows (initial BW of $25.6{\pm}3.2kg$) were fitted with ileal T-cannulas and allotted to a replicated $4{\times}4$ Latin square design. Three cornstarch-based diets were formulated using each of the protein feeds as the sole source of AA. A nitrogen-free diet was also formulated to measure endogenous losses of AA. In Exp. 3, one hundred and eighty piglets (initial BW of $7.95{\pm}1.59kg$) weaned at $28{\times}2d$ were blocked by weight and assigned to one of five treatments for a 28-d growth performance study, each treatment was fed to six pens with six pigs (three barrows and three gilts) per pen. The five treatments consisted of the control group (CON), which was a corn-soybean meal diet containing 5% fish meal, and the other four treatments, which replaced a set amount of fish meal with either Prosin (2.5% or 5%) or Protide (2.5% or 5%). The diets were formulated to provide same nutrient levels. The results showed that on a DM basis, both of the DE and ME contents were lower in Prosin and Protide than that of fish meal (p<0.05). The SID of CP and all essential AA were greater in fish meal than in Prosin and Protide (p<0.05). The pigs fed CON diet had greater weight gain and lower feed conversion rate (FCR) than pigs fed 5% Prosin and 5% Protide diets (p<0.05). The digestibility of CP was greater in pigs fed CON, 2.5% Prosin and 2.5% Protide diets than the pigs fed 5% Prosin and 5% Protide diets (p<0.05). Villus height in jejunum and ileum, and villus height to crypt depth ratio in the jejunum were higher (p<0.05) in pigs fed CON, 2.5% Prosin and 2.5% Protide diets compared with the 5% Prosin and 5% Protide diets. Pigs fed CON diet had greater villus height to crypt depth ratio in the ileum than the pigs fed 5% Prosin and 5% Protide diets (p<0.05). In conclusion, although Prosin and Protide contained lower ME content and SID of AA than fish meal, Prosin and Protide replacing 50% of fish meal in diet with identical nutrient levels could obtain similar performance, nutrient digestibility and intestinal morphology in weaned pigs.

Effect of microencapsulation of egg yolk immunoglobulin Y by sodium alginate/chitosan/sodium alginate on the growth performance, serum parameters, and intestinal health of broiler chickens

  • Yuanming Jin;Haojie Lv;Mingzhu Wang;Chong-Su Cho;Jongsuh Shin;Lianhua Cui;Changguo Yan
    • Animal Bioscience
    • /
    • v.36 no.8
    • /
    • pp.1241-1251
    • /
    • 2023
  • Objective: Egg yolk immunoglobulin (IgY) is an antibiotic alternative to prevent and fight intestinal pathogenic infections. This study aimed to investigate the effects of sodium alginate/chitosan/sodium alginate IgY microcapsules on the growth performance, serum parameters, and intestinal health of broiler chickens. Methods: One-day-old broilers (Ross 308) were divided into five treatments, each with 10 replicates of five chickens. The dietary treatments were maintained for 28 days and consisted of a basal diet (NC), basal diet + 500 mg chlortetracycline/kg diet (CH), basal diet + 50 mg non-microencapsulated IgY/kg diet (NM), basal diet + 600 mg low levels microencapsulated IgY/kg diet (LM), and basal diet + 700 mg high levels microencapsulated IgY/kg diet (HM). Results: Throughout the 28-day trial period, the NM, LM, HM, and CH groups increased average daily gain compared with the NC group (p<0.05), and the HM group reduced feed conversion ratio compared with the CH group (p<0.05). The LM and HM groups increased relative organ weights of thymus and spleen compared with the CH and NM groups (p<0.05). The HM group improved the duodenal, jejunal and ileum villi height (VH) and villus height to crypt depth ratio (VH:CD) compared with the CH and NM groups (p<0.05). Compared with the CH group, the HM group increased serum immunoglobulin (IgA), immunoglobulin G (IgG), superoxide dismutase, total antioxidant capacity, and glutathione peroxidase levels (p<0.05), and decreased serum malondialdehyde levels (p<0.05). Compared with the NC group, the NM, LM, HM, and CH groups reduced colonic Escherichia coli and Salmonella levels (p<0.05). and the HM group promoted the levels of lactic acid bacteria and bifidobacteria compared with the CH group (p<0.05). Conclusion: Microencapsulation could be considered as a way to improve the efficiency of IgY. The 700 mg high levels microencapsulated IgY/kg diet could potentially be used as an alternative to antibiotics to improve the immune performance and intestinal health, leading to better performance of broiler chickens.

Diversity of Cultured and Uncultured Bacteria in the Gut of Olive Flounder Paralichthys olivaceus (넙치(Paralichthys olivaceus) 장관의 배양 및 비배양 방법에 의한 세균의 다양성)

  • Kim, Ahran;Kim, Do-Hyung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.4
    • /
    • pp.447-453
    • /
    • 2015
  • We determined the optimal culture conditions for obtaining the maximum number of intestinal bacteria from the olive flounder Paralichthys olivaceus, and studied bacterial diversity using both culture-dependent and culture-independent methods. Using six culture conditions, mean bacterial numbers were greater than $10^6$ per gram of gut mucus, regardless of the medium. However, the bacterial diversity, based on colony morphology, appeared much higher on Marine agar (MA) and Zobell 2216 agar than on other media. We found eight and 17 cultured bacterial phylotypes with 99% minimum similarity in gut mucus grown on MA and tryptic soy agar, respectively. Furthermore, we used genomic DNA extracted from gut mucus to generate 78 random clones, which were grouped into 25 phylotypes. Of these, six were affiliated with Firmicutes, Actinobacteria, and Verrucomicrobia, and were not found using our culture-dependent methods. Consequently, we believe that Marine agar and Zobell 2216 agar are optimal media for culturing diverse intestinal microbes; we also discovered several novel sequences not previously recognized as part of the gut microbiota of olive flounder.

A report of 18 unrecorded prokaryotic species isolated from the feces of an Oriental stork (Ciconia boyciana), and from the intestinal tracts of a cobitid fish (Kichulchoia multifasciata) and a Korean splendid dace (Coreoleuciscus splendidus)

  • Lee, So-Yeon;Han, Jeong Eun;Kim, Pil Soo;Bae, Jin-Woo
    • Journal of Species Research
    • /
    • v.9 no.4
    • /
    • pp.325-338
    • /
    • 2020
  • The animal gut is filled with highly diverse microbes associated with host metabolism, physiology, and pathology. However, numerous animal gut microbes have not been cultured or reported. We isolated various bacterial species using culture-dependent approaches during a comprehensive investigation of endangered endemic vertebrate species in the Republic of Korea. A total of 18 unrecorded bacterial species were isolated from the feces of an Oriental stork (Ciconia boyciana), and from the intestinal tracts of a cobitid fish (Kichulchoia multifasciata) and a Korean splendid dace (Coreoleuciscus splendidus). Based on a phylogenetic analysis of 16S rRNA gene sequences, we discovered species belonging to the phyla Actinobacteria (eight species), Firmicutes (seven species), Proteobacteria (two species), and Bacteroidetes (one species). Based on their high 16S rRNA gene sequence similarities (>98.7%) and formation of monophyletic clades with type species, each species was classified into an independent and predefined bacterial species. Gram-stain reaction, colony and cell morphology, basic biochemical characteristics, isolation source, and NIBR IDs for each species are described in the species description section.

Effects of Keratinase on Performance, Nutrient Utilization, Intestinal Morphology, Intestinal Ecology and Inflammatory Response of Weaned Piglets Fed Diets with Different Levels of Crude Protein

  • Wang, D.;Piao, X.S.;Zeng, Z.K.;Lu, T.;Zhang, Q.;Li, P.F.;Xue, L.F.;Kim, S.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.12
    • /
    • pp.1718-1728
    • /
    • 2011
  • Two experiments were conducted to investigate the in vitro ability of keratinase to hydrolyze soybean glycinin and ${\beta}$-conglycinin and to evaluate the in vivo effects of keratinase when included in corn-soybean diets with different levels of crude protein and fed to nursery pigs. In experiment 1, a saturated keratinase solution (1 ml) was added to two blank controls of either glycinin or ${\beta}$-conglycinin resulting in the hydrolysis of 94.74% glycinin and 88.89% ${\beta}$-conglycinin. In experiment 2, 190 pigs (8.3${\pm}$0.63 kg BW) were allotted to one of four treatments in a 2${\times}$2 factorial arrangement on the basis of body weight, and sex was balanced among the pens. The effects of crude protein (19 vs. 22%) and keratinase (0 vs. 0.05%) were studied. Each treatment was applied to six pens with seven (two pens) or eight pigs per pen. Pigs were fed the experimental diets for 21 d. Weight gain and feed conversion ratio were improved (p<0.05) with keratinase supplementation while feed intake was reduced (p<0.05). Keratinase supplementation increased (p<0.05) the apparent total tract digestibility of dry matter, energy, crude protein and phosphorus. Keratinase supplementation also increased n-butyric acid in the cecum and colon, lactobacilli and total anaerobe counts in the colon as well as the ratio of villus height to crypt depth in the ileum. Additionally, fecal score, ammonia nitrogen and branch chain volatile fatty acids in the colon, E. coli and total aerobe counts in the colon, crypt depth in the jejunum and ileum as well as serum interleukin-1 and interleukin-6 concentrations were also decreased (p<0.05) by keratinase supplementation. A reduction in dietary crude protein decreased (p<0.05) colon ammonia nitrogen concentration and cecal propionic acid and branch chain volatile fatty acid concentrations. In addition, cecal E. coli counts, colon total anaerobe counts, ileal crypt depth, and serum interleukin-1 and interleukin-6 concentrations were also decreased (p<0.05) with the reduction of dietary crude protein. With the exception of fecal scores, there were no significant interactions between crude protein and keratinase. This study provides evidence that dietary keratinase supplementation improved nursery pig performance by improving intestinal morphology and ecology, thus improving nutrient digestibility and alleviating the inflammatory response.

Effects of dietary supplementation of polysaccharide from Agaricus blazei Murr on productive performance, egg quality, blood metabolites, intestinal morphology and microbiota of Korean quail

  • Liang Hong;Zheng Ma;Xueyi Jing;Hua Yang;Jifei Ma;Lei Pu;Jianbin Zhang
    • Animal Bioscience
    • /
    • v.37 no.8
    • /
    • pp.1452-1462
    • /
    • 2024
  • Objective: This study aimed to investigate the effects of dietary supplementation with Agaricus blazei polysaccharide (ABP) at varying concentrations on the performance, egg quality, blood biochemistry, intestinal morphology, and microflora of quail. Methods: The study involved a total of 2,700 Korean quails, which were randomly divided into three groups. The measured variables encompassed productive performance, egg parameters, carcass parameters, serum metabolites, immune response parameters, antioxidative properties, and gut microbiome. Results: The addition of ABP did not have a significant effect on average daily feed intake. However, it was found to increase the average daily egg weight and egg production rate, reduce the feed-egg ratio. There were no significant impacts on egg quality measures such as egg shape index, egg yolk index and color, egg yolk and protein content. However, ABP supplementation significantly increased the Hough unit (p<0.01) and decreased the rate of unqualified eggs (p<0.01). Regarding serum parameters, the inclusion led to an increase in total protein concentration (p<0.05) and a reduction in low-density lipoprotein cholesterol (p<0.05). There were no significant effects observed on immune indicators such as immunoglobulin A (IgA) and IgM. ABP supplementation increased the levels of serum antioxidant indicators, including glutathione peroxidase, total superoxide dismutase (p<0.05), and total antioxidant capacity colorimeter (p<0.05). Furthermore, ABP supplementation significantly elevated the intramuscular fatty acid content in quail meat. Additionally, ABP supplementation demonstrated a significant improvement in the diversity of gut microbiota and induced alterations in the composition of the gut microbiota. Conclusion: The findings of this study indicate that dietary supplementation of ABP enhanced production performance and antioxidant capacity while increasing the levels of polyunsaturated fatty acids in quail muscle.