• Title/Summary/Keyword: Inversion barrier

Search Result 23, Processing Time 0.029 seconds

Theoretical Studies of $d^0$ Titanocene Complexes

  • Kang, Sung-Kwon;Ahn, Byeong-Gak;Choi, Eun-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.11
    • /
    • pp.996-1000
    • /
    • 1994
  • Ab initio calculations with various basis sets have been carried out to investigate the geometries and ring inversion barrier of $R_2TiC_3H_6\;and\;R_2TiS_3$, R=Cp and Cl. Optimized geometries of $R_2TiC_3H_6$ showed the four membered ring was planar on Cs symmetry. However, $R_2TiS_3$ complexes were optimized to be stable in the puckered form. The smallest Basis III with STO-3G on Cp ligands gave reasonable results for the calculations of metallocene. The energy barrier for the ring inversion of metallacyclosulfanes, $Cp_2TiS_3$ was computed to be 8.72 kcal/mol at MP2 level. For the Cl system, we reproduced the molecular structure and ring inversion energy with Basis V.

A Molecular Orbital Study of the Electronic Structure and the Ring Inversion Process in$Cp_2TiS_3$ Complex

  • Sung Kwon Kang;Byeong Gak Ahn
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.8
    • /
    • pp.658-662
    • /
    • 1994
  • Ab initio and extended Huckel calculations have been applied to discuss the electronic structure, ring inversion barrier, and geometry of the $Cp_2TiS_3$ compound. The deformation of four membered ring in the planar geometry is originated from a second-order Jahn-Teller distortion due to the small energy gap between HOMO and LUMO on the basis of extended Huckel calculations. The puckered $C_s$ geometry is stabilized by the interaction of the $x^2-y^2$ metal orbital with the hybrid orbital in sulfur. Ab initio calculations have been carried out to explore the ring inversion process for the model $Cl_2TiS_3$ compound. We have optimized $C_s$ and $C_{2v}$ structures of the model compound at the RHF level. The energy barriers for the ring inversion are sensitive to the used basis set. With 4-31$G^*$ for the Cl and S ligands, the barriers are computed to be 8.41 kcal/mol at MP2 and 8.02 kcal/mol at MP4 level.

Molecular Orbital Studies on the Reaction Path and Reactivity of $S_N2$ Reactions. Determination of Reactivity by MO Theory (Part 69) (SN2 반응의 반응경로 및 반응성에 관한 분자궤도함수 이론적 연구)

  • Lee, Ik Choon;Cho, Jeoung Ki;Lee, Hae Hwang;O, Hyeok Geun
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.239-247
    • /
    • 1990
  • The gas-phase S_N2$ reactions can be classified into neutral bimolecular, solvated, and ionic reactions; the neutral bimolecular reaction proceeds via retention mechanism whereas the ionic reaction produces inversion products. In the reaction of solvated nucleophile with one solvent molecule, a six-center transition state (TS) is formed and the two processes i.e., retention and inversion, are found to compete with a favored path depending on the electronic effect of the nucleophile and substituents in the substrate and on the steric requirement. In the ionic reaction, the difference in the energy barrier between the two processes reduces to a small value when the substrate methyl group is made bulky, leaving ability of the leaving group is improved and at the same time the negative charge of the nucleophile is dispersed. When the reaction center atom in the $S_N2$ reaction is changed to a larger sized second row elements, the activation barrier decreases since the steric crowding in the penta-coordinated TS is relieved. However within the same row, the barrier was found to increase as the atomic size decreased. For the boron, B, the barrier height was the least since in addition to the relatively large atomic size compared to C and N, it forms tetra-coordinated TS so that the steric crowding becomes nearly negligible.

  • PDF

Schottky Barrier Free Contacts in Graphene/MoS2 Field-Effect-Transistor

  • Qiu, Dongri;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.209.2-209.2
    • /
    • 2015
  • Two dimensional layered materials, such as transition metal dichalcogenides (TMDs) family have been attracted significant attention due to novel physical and chemical properties. Among them, molybdenum disulfide ($MoS_2$) has novel physical phenomena such as absence of dangling bonds, lack of inversion symmetry, valley degrees of freedom. Previous studies have shown that the interface of metal/$MoS_2$ contacts significantly affects device performance due to presence of a scalable Schottky barrier height at their interface, resulting voltage drops and restricting carrier injection. In this study, we report a new device structure by using few-layer graphene as the bottom interconnections, in order to offer Schottky barrier free contact to bi-layer $MoS_2$. The fabrication of process start with mechanically exfoliates bulk graphite that served as the source/drain electrodes. The semiconducting $MoS_2$ flake was deposited onto a $SiO_2$ (280 nm-thick)/Si substrate in which graphene electrodes were pre-deposited. To evaluate the barrier height of contact, we employed thermionic-emission theory to describe our experimental findings. We demonstrate that, the Schottky barrier height dramatically decreases from 300 to 0 meV as function of gate voltages, and further becomes negative values. Our findings suggested that, few-layer graphene could be able to realize ohmic contact and to provide new opportunities in ohmic formations.

  • PDF

Comparison of Electrical Properties between Sputter Deposited Au and Cu Schottky Contacts to n-type Ge

  • Kim, Hogyoung;Kim, Min Kyung;Kim, Yeon Jin
    • Korean Journal of Materials Research
    • /
    • v.26 no.10
    • /
    • pp.556-560
    • /
    • 2016
  • Using current-voltage (I-V) and capacitance-voltage (C-V) measurements, the electrical properties of Au and Cu Schottky contacts to n-Ge were comparatively investigated. Lower values of barrier height, ideality factor and series resistance were obtained for the Au contact as compared to the Cu contact. The values of capacitance showed strong dependence on the bias voltage and the frequency. The presence of an inversion layer at the interface might reduce the intercept voltage at the voltage axis, lowering the barrier height for C-V measurements, especially at lower frequencies. In addition, a higher interface state density was observed for the Au contact. The generation of sputter deposition-induced defects might occur more severely for the Au contact; these defects affected both the I-V and C-V characteristics.

Inversion Barriers of Methylsilole and Methylgermole Monoanions

  • Pak, Youngshang;Ko, Young Chun;Sohn, Honglae
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.4161-4164
    • /
    • 2012
  • Density functional MO calculations for the methylsilole anion of $[C_4H_4SiMe]^-$ and methylgermole anion of $[C_4H_4SiMe]^-$ at the B3LYP (full)/6-311+$G^*$ level (GAUSSIAN 94) were carried out and characterized by frequency analysis. The ground state structure for the methylsilole anion and methylgermole anion is that the methyl group is pyramidalized with highly localized structure. The difference between the calculated $C_{\alpha}-C_{\beta}$ and $C_{\beta}-C_{\beta}$ distances are 9.4 and 11.5 pm, respectively. The E-Me vector forms an angle of $67.9^{\circ}$ and $78.2^{\circ}$ with the $C_4E$ plane, respectively. The optimized structures of the saddle point state for the methylsilole anion and methylgermole anion have been also found as a planar with highly delocalized structure. The optimized $C_{\alpha}-C_{\beta}$ and $C_{\beta}-C_{\beta}$ distances are nearly equal for both cases. The methyl group is located in the plane of $C_4E$ ring and the angle between the E-Me vector and the $C_4E$ plane for the methylsilole anion and methylgermole anion is $2.0^{\circ}$ and $2.3^{\circ}$, respectively. The energy difference between the ground state structure and the transition state structure is only 5.1 kcal $mol^{-1}$ for the methylsilole anion. However, the energy difference of the methylgermole anion is 14.9 kcal $mol^{-1}$, which is much higher than that for the corresponding methylsilole monoanion by 9.8 kcal $mol^{-1}$. Based on MO calculations, we suggest that the head-to-tail dimer compound, 4, result from [2+2] cycloaddition of silicon-carbon double bond character in the highly delocalized transition state of 1. However, the inversion barrier for the methylgermole anion is too high to dimerize.

The characterization of a barrier against Cu diffusion by C-V measurement (C-V 측정에 의한 Cu 확산방지막 특성 평가)

  • 이승윤;라사균;이원준;김동원;박종욱
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.4
    • /
    • pp.333-340
    • /
    • 1996
  • The properties of TiN as a barrier against Cu diffusion ere studied by sheet resistance measurement, X-ray diffraction, scanning electron microscopy, Auger electron spectroscopy, and capacitance-voltage(C-V) measurement. The sensitivities of the various methods were compared. Specimens with Cu/TiN/Ti/SiO2/Si structure were prepared by various deposition techniques and annealed at various temperatures ranging from $500^{\circ}C$ to $800^{\circ}C$ in 10%H2/90%Ar ambient for hours. As the effectiveness of the barrier property of TiN against Cu diffusion was vanished, the irregular-shaped sports were observed and outdiffused Si were detected on the surface of the Cu thin film. The C-V characteristics of the MOS capacitors varied drastically with annealing temperatures. In C-V measurement, the inversion capacitance decreased at annealing temperature range from $500^{\circ}C$ to $700^{\circ}C$ and increased remarkably at $800^{\circ}C$. These variations may be due to the Cu diffusion through TiN into $SiO_2$ and Si.

  • PDF

Interface Trap Effects on the Output Characteristics of GaN Schottky Barrier MOSFET (GaN Schottky Barrier MOSFET의 출력 전류에 대한 계면 트랩의 영향)

  • Park, Byeong-Jun;Kim, Han-Sol;Hahm, Sung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.271-277
    • /
    • 2022
  • We analyzed the effects of the interface trap on the output characteristics of an inversion mode n-channel GaN Schottky barrier (SB)-MOSFET based on the Nit distribution using TCAD simulation. As interface trap number density (Nit) increased, the threshold voltage increased while the drain current density decreased. Under Nit=5.0×1010 cm-2 condition, the threshold voltage was 3.2 V for VDS=1 V, and the drain current density reduced to 2.4 mA/mm relative to the non-trap condition. Regardless of the Nit distribution type, there was an increase in the subthreshold swing (SS) following an increase in Nit. Under U-shaped Nit distribution, it was confirmed that the SS varied depending on the gate voltage. The interface fixed charge (Qf) caused an shift in the threshold voltage and increased the off-state current collectively with the surface trap. In summary, GaN SB-MOSFET can be a building block for high power UV optoelectronic circuit provided the surface state is significantly reduced.

Substituents Effect on Aziridine Chemistry: N-Inversion Energy, Reactivity and Regioselectivity of Nucleophilic Ring-opening

  • Park, Gyoo-Soon;Kim, Seok-Chan;Kang, Han-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.9
    • /
    • pp.1339-1343
    • /
    • 2005
  • The N-inversion energies and nucleophilic ring-opening reactions of N-substituted aziridine compounds are investigated using B3LYP/6-31+$G^*$ methods, where substituents (R) on the nitrogen atom has been H (1), Me (2), Ph (3), Bn (4), CHMePh (5), $CO_2Me$ (6), COPh (7) and $SO_2Ph$ (8). The N-inversion energy with X group are decreased as the following order: R = CHMePh (17.06 kcal/mol) $\gt$ Me (16.97) $\gt$ Bn (16.70) $\gt$ H (16.64) $\gt$ $SO_2Ph$ (12.18) $\gt$ Ph (8.91) $\gt$ COPh (5.75) $\gt$ $CO_2Me$ (5.48). For reactivity of the ring opening toward cyanide ion, the aziridine 6 (R=$CO_2Me$) is shown to be the most reactive one. During the ring opening of aziridine 6 by CN$^{\ominus}$, the torsional OCNC angle becomes near to $180^{\circ}$, where the geometry allows for the effective incorporation of electrons of the nitrogen atom to the C=O bond. It would be a possible driving force for nucleophilic ring opening reaction as well as decreasing the N-inversion energy barrier. Regarding to the regioselectivity, the orientation of nucleophile in ring opening reaction appears to be different in the case of 9 and 10. The results are discussed in terms of steric/electronic effect of the $C_2$-substituents.

Synthesis of 1,1-Bis(n-butyl, t-butyl)-2,3,4,5-Tetraphenyl-1-Silacyclopentadiene and NMR Study of Their 2,5-Carbodianions

  • Hong, Jang-Hwan
    • Journal of Integrative Natural Science
    • /
    • v.6 no.2
    • /
    • pp.65-70
    • /
    • 2013
  • 1,1-Bis(n-butyl)-2,3,4,5-tetraphenyl-1-silacyclopentadiene (3) and 1,1-bis(t-butyl)-2,3,4,5-tetraphenyl-1-silacyclopentadiene (4) are synthesized from the reaction of the versatile silole dianion (2) with n-butyl bromide and t-butyl bromide. Reduction of (3) and (4) with an excess of lithium to give 1,1-bis(n-butyl)-2,5-dilithio-2,3,4,5-tetraphenyl-1-silacyclopenta-3-enide (6) and 1,1-bis(t-butyl)-2,5-dilithio-2,3,4,5-tetraphenyl-1-silacyclopenta-3-enide (7). $^{13}C$-NMR study of two 2,5-carbodianions (6 and 7) shows tert-carbanion at 73.18 and 78.12 ppm respectively. Two bulky tert-butyl groups in (7) increase the inversion barrier at the tert-carbanion, line broadenings of tert-butyl groups in $^1H$ and $^{13}C$-NMR spectrum are observed.