• Title/Summary/Keyword: IoT gateway

Search Result 173, Processing Time 0.029 seconds

Development of KEPCO e-IoT Standard Type oneM2M Gateway for Efficient Management of Energy Facilities (에너지 설비의 효율적 관리를 위한 한전 e-IoT 표준형 oneM2M Gateway 개발)

  • Sim, Hyun;Kim, Yo-Han
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1213-1222
    • /
    • 2021
  • This study is a digitalization study based on ICT technology as part of the development of innovative technologies in the new energy industry as a 2050 carbon-neutral policy. It is the development of an oneM2M-based IoT server platform that can be integrated and managed in conjunction with the external interface of each energy facility. It analyzes KEPCO's e-IoT standard specifications through the Power Research Institute's 'SPIN' and develops representative standards, LWM2M and oneM gateway platforms. OneM2M secures and analyzes the recently announced standard for Release 2 instead of the existing Release 1. In addition, the e-IoT standard oneM2M platform is developed based on R2. In addition, it selects the specifications for e-IoT gateway devices that can sufficiently implement KEPCO's e-IoT standards. In addition, a technology and system for developing a high-performance gateway device that considers future scalability were proposed.

Development of IoT Gateway based on Open Source H/W (오픈 소스 하드웨어 기반의 IoT 게이트웨이 개발)

  • Ryu, Dae-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.9
    • /
    • pp.1065-1070
    • /
    • 2015
  • The era of IoT in which all objects are intelligent and are connected to the Internet has been started. In order to establish and activate an IoT eco system, open services platform is very important. In this paper, we developed a gateway that utilize the Raspberry Pi which is open source hardware for IoT open service platform. The gateway supports a variety of wireless interface and equipped with MQTT, a standard messaging protocol for IoT. To confirm main function of developed gateway, we built a IoT test bed and verified normal operation of our gateway.

Design of IoT Gateway based Event-Driven Approach for IoT related Applications (IoT 게이트웨이 기반의 이벤트 중심 접근 방식 응용프로그램 설계)

  • Nkenyereye, Lionel;Jang, Jong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.11
    • /
    • pp.2119-2124
    • /
    • 2016
  • The Internet of things (IoT) needs to be an event-driven approach for efficient related time response and processing. The growth of mobile devices in Internet of Things (IoT) leads to a number of intelligent buildings related IoT applications. For instance, home automation controlling system uses client system such web apps on smartphone or web service to access the home server by sending control commands. The gateway based RESTful technology responsible for handling clients'requests attests an internet latency in case a large number of clients' requests submit toward the gateway increases. In this paper, we propose the design tasks of the IoT gateway for handling concurrency events. The gateway based event-driven architecture is designed for building IoT gateway using node.js on one side and communication protocol based message-oriented middleware known as XMPP to handle communications of intelligent building control devices connected to the gateway through a centralized hub.

Implementation of automatic detection system of IoT based sensor device (Considering the application service of reduction of consumption current)

  • Kwon, Myung-Kyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.9
    • /
    • pp.113-122
    • /
    • 2018
  • In this paper, IoT(Internet of things) technology, which is the core of the 4th industrial revolution, was applied to the study of reduction of consumption current. The IoT is a sensor that collects data, a sensor communication, a gateway that processes and stores the collected data. Data application of IoT technology is applied to smart home, smart city, healthcare, smart factory, etc. and it needs to be applied to various industrial fields. By sensing the location of the sensor device, the specific functions of the gateway and the platform are turned ON and OFF to reduce the consumption current of the equipment during the OFF period. When the sensor device accesses the gateway, the specific function of the gateway is turned ON and When the device is separated from the gateway, it senses the sensitivity of the wireless signal and automatically turns off the certain functions. As a resurt, it has reduced the consumption of current. In this paper, we propose a novel system for detecting the location of sensor devices by applying IoT technology. The system implementation is realized by software based, and defines the requirements for the implementation of the sensor device gateway. The gateway automatically detects the location, movement of the device and performs necessary functions. Finally verifies the automatic detection performance of the gateway according to the location of the device. It will contribute greatly to the development of the smart city and office.

Design of IoT Gateway for Storing Sensor Data using Ardulink based MQTT (Ardulink 기반 MQTT를 이용한 센서 데이터 저장을위한 IoT 게이트웨이 설계)

  • Nkenyereye, Lionel;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.744-747
    • /
    • 2017
  • The Internet of things (IoT) needs to be an event-driven approach for efficient real time response and processing. An IoT gateway is sometimes employed to provide the connection and translation between devices and the cloud. Storing data in the local database, and then forwarding it on the cloud is a task to be relegated to a gateway device In this paper, we propose the design of the IoT gateway with Fog computing for storing data from sensors into a local database. In the procedure of designing storing tasks, we propose to use the interfacing software known as Ardulink MQTT bridge. MQTT is a protocol for sensors to publish data to the clients. When it comes to needing historical data, MQTT connector can push MQTT data into SQL database. We write an MQTT client and based on the message topic insert the values into a SQL Database The design of IoT gateway with Fog computing adds value because it provides processing of the data across multiple devices before it sends to the cloud.

  • PDF

A Study on Region Gateway-based Data Transmission in IoT Environment (IoT 환경에서의 지역 Gateway 기반 데이터 전송에 관한 연구)

  • Cho, Kyoung-Woo;Oh, Chang-heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.531-532
    • /
    • 2017
  • OneM2M's domain is divided into Device, Network, and Application domain, and data generated from various devices is collected through IoT/M2M gateway, it is delivered to appropriate IoT/M2M Infrastructure through Core/Access Network. However, access to the Core/Access Network is also required if the device transmit data to an Infrastructure located within the same area. In this paper, it propose data transmission based on region gateway that judge and transmit local information of data by adding a concept of region network domain to oneM2M domain, prevent access to unnecessary Core/Access Network.

  • PDF

IP-Based Heterogeneous Network Interface Gateway for IoT Big Data Collection (IoT 빅데이터 수집을 위한 IP기반 이기종 네트워크 인터페이스 연동 게이트웨이)

  • Kang, Jiheon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.2
    • /
    • pp.173-178
    • /
    • 2019
  • Recently, the types and amount of data generated, collected, and measured in IoT such as smart home, security, and factory are increasing. The technologies for IoT service include sensor devices to measure desired data, embedded software to control the devices such as signal processing, wireless network protocol to transmit and receive the measured data, and big data and AI-based analysis. In this paper, we focused on developing a gateway for interfacing heterogeneous sensor network protocols that are used in various IoT devices and propose a heterogeneous network interface IoT gateway. We utilized a OpenWrt-based wireless routers and used 6LoWAN stack for IP-based communication via BLE and IEEE 802.15.4 adapters. We developed a software to convert Z-Wave and LoRa packets into IP packet using our Python-based middleware. We expect the IoT gateway to be used as an effective device for collecting IoT big data.

Analysis for Efficiency of Long Range Wireless IoT Network (장거리무선통신 IoT 네트워크 효율성 분석)

  • Kim, Ki-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.6
    • /
    • pp.617-623
    • /
    • 2016
  • Recently, IoT technology has been applied to the control of appliances in the home, and information about temperature, humidity, etc. is collected and the application of the system to control the indoor environment automatically is increasing. Currently, the network configuration of IoT devices is mainly used to connect IoT devices to the Internet through wireless gateways. Since such a method is dependent on a gateway, there are limitations in providing various services. Therefore, this paper proposes an independent method of gateway by using IoT network without using gateway by applying long distance wireless communication technology. IoT devices using the proposed long distance wireless internet technology can connect to a remote server and provide mobility that can not be supported by existing methods, thereby providing more various services. The performance evaluation of the proposed network configuration method is compared with the delay time and the amount of data generated in the existing network method constituted by the gateway and the proposed network configuration method respectively. Experimental results show that the proposed method decreases the delay time and the amount of data generated by the gateway.

Gateway Channel Hopping to Improve Transmission Efficiency in Long-range IoT Networks

  • Kim, Dae-Young;Kim, Seokhoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1599-1610
    • /
    • 2019
  • Intelligent services have expanded as Internet of Things (IoT) technology has evolved and new requirements emerge to accommodate various services. One new requirement is transmitting data over long distances with low-power. Researchers have developed low power wide area (LPWA) network technology to satisfy the requirement; this can improve IoT network infrastructure and increase the range of services. However, network coverage expansion causes several problems. The traffic load is concentrated at a specific gateway, which causes network congestion and leads to decreased transmission efficiency. Therefore, the approach proposed in this paper attempts to recognize and then avoid congestion through gateway channel hopping. The LPWA network employs multiple channels, so wireless channel hopping is available in a gateway. Devices that are not delay sensitive wait for the gateway to reappear on their wireless channel; delay sensitive devices change the wireless channel along the hopping gateway. Thus, the traffic load and congestion in each wireless channel can be reduced improving transmission efficiency. The proposed approach's performance is evaluated by computer simulation and verified in terms of transmission efficiency.

IEC 61850 Based IoT Gateway Platform for Interworking to Microgrid Operational System (마이크로그리드 운영 시스템 연계를 위한 IEC 61850 기반 IoT 게이트웨이 플랫폼)

  • Park, Jeewon;Song, ByungKwen;Shin, InJae
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.2
    • /
    • pp.67-73
    • /
    • 2018
  • There are many types of power facilities such as transformers, switches, and energy storage devices in the micro grid environment. However, with the development of IoT technology, opportunities to acquire sensor information such as temperature, pressure, and humidity are provided. In the existing micro grid environment, the communication protocols such as MMS transport protocol in IEC 61850 standard is applied in accordance with the integrated operation between the power facilities and the platform. Therefore, to accommodate IoT data, a gateway technology that can link IoT data to a data collection device (FEP) based on IEC 61850 is required. In this paper, we propose IEC 61850 based IoT gateway platform prototype for microgrid operating system linkage. The gateway platform consists of an IoT protocol interface module (MQTT, CoAP, AMQP) and database, IEC 61850 server. For databases, We used open source based NoSQL databases, Hbase and MongoDB, to store JSON data. We verified the interoperability between the IoT protocol and the IEC 61850 protocol using Sisco's MMS EASY Lite.