• Title/Summary/Keyword: Ion pair formation

Search Result 52, Processing Time 0.023 seconds

Medium Effect on the Formation of Ion-Pair between Methylene Blue and Tetraphenylborate in Dilute Solutions

  • Moon, Eui-Wha;Lee, Beom-Gyu;Kim, Kang-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.4
    • /
    • pp.209-212
    • /
    • 1988
  • The hydrophobic interaction leading to the formation of ion-pair between $MB^+$ and $TPB^-$ was investigated spectroscopically by varying the medium with the addition of 1,A-dioxane or urea. Beyond 0.01 mole fraction of 1,A-dioxane in water or above 2.0M urea the ion-pair appeared to be completely dissociated into individual ions. The ion-pair was not observed in common organic solvents and the absorption maxima of $MB^+$ were correlated relatively well with the ${\pi}^{\ast}$-scale.

Double Ion-Pair Formation in Aqueous Solutions of Methylene Blue and Tetraphenylborate

  • Yoon, Kil-Joong;Kim, Kang-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.3
    • /
    • pp.149-152
    • /
    • 1985
  • Spectrophotometric and spectrofluorimetric methods of analysis were conducted in dilute aqueous solutions of methylene blue and tetraphenylborate. The formation of double ion-pair was confirmed and its overall formation constant, ${\Delta}H^{\circ}$, and ${\Delta}S^{\circ}$ were obtained. The irradiation with wavelengths over visible region resulted in bleaching the mixed solution. The bleaching reaction was also proceeded at $55^{\circ}C$. The reactions of the double ion-pair were briefly discussed.

Counterion Specific Conformational Transition and ion Selective Transport of a Poly(L-glutamic acid)/PVA Blend Membrane (Poly(L-glutamic acid)/PVA 블렌드막의 대이온 선택적인 구조전이와 이온투과 특성)

  • 허양일
    • Polymer(Korea)
    • /
    • v.24 no.6
    • /
    • pp.802-809
    • /
    • 2000
  • Counterion-specific helix formation and ion-selective transport of alkali metal chlorides (LiCl, NaCl, KCl, CsCl) were investigated for a poly(L-glutamic acid)(PLGA)/poly (vinyl alcohol)(PVA) blend membrane immersed in aqueous ethanol. The counterion specificity for helix formation of PLG alkali metal salts in the membrane was Li>Na>K>Cs. This specificity is ascribed to a contact ion-pair formation between the PLG carboxyl anion and the bound counterion, which depends on the energy balance between the electrostatic interaction and the desolvation. In aqueous ethanol, an appreciable ion-selectivity was observed for the permeability coefficient, i.e. Li$^{+}{\cdot}$Cl$^{-}$) formation between counterion and coion, and the latter to a specific interaction of diffusing counterions with polymer charges.

  • PDF

Extraction Equilibria and Solvent Sublation for Determination of Ultra Trace Bi(Ⅲ), In(Ⅲ) and TI(Ⅲ) in Water Samples by Ion-Pairs of Metal-2-Naphthoate Complexes and Tetrabutylammonium Ion

  • Kim, Young-Sang;Choi, Yoon-seok;Lee, Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.10
    • /
    • pp.1381-1391
    • /
    • 2002
  • The solvent sublation using ion pairs of metal-2-naphthoate(2-HNph) and tetrabutyl ammonium ($TBA^+$) ion has been studied for the concentration and determination of ultra trace Bi(III), In(III) and Tl(Ⅲ) ions in water samples. The partition coefficients ($K_p$) and the extraction percentages of 2-HNph and the ion pairs to methyl isobutyl ketone (MIBK) were obtained as basic data. After the ion pair $TBA^+$·M$(Nph)_4^-$ was formed in water samples, the analytes were concentrated by the solvent sublation and the elements were determined by GF-AAS. The pH of the sample solution, the amount of the ligand and counter ion added and stirring time were optimized for the efficient formation of the ion pair. The type and amount of optimum surfactant, bubbling time with nitrogen and the type of solvent were investigated for the solvent sublation as well. 10.0 mL of 0.1 M 2-HNph and 2.0 mL of 0.1 M $TBA^+$ were added to a 1.0 L sample solution at pH 5.0. After 2.0 mL of 0.2%(w/v) Triton X-100 was added, the ion pairs were extracted into 20.0 mL MIBK in a flotation cell by bubbling. The analytes were determined by a calibration curve method with measured absorbances in MIBK, and the recovery was 80-120%.

Potentiometric Measurement of Standard Potential of Mercury and Ion-pair Formation Constants of Mercuric Halides in Anhydrous Ethylenediamine (에틸렌디아민 非水溶液中에서의 水銀電極의 標準電位 및 水銀鹽化鹽의 Ion-Pair 恒數測定)

  • Kim, Joon-Yong
    • Journal of the Korean Chemical Society
    • /
    • v.14 no.1
    • /
    • pp.13-18
    • /
    • 1970
  • 非水溶液 Ethylenediamine 中에서 水銀電極의 標準電位 및 水銀鹽化物, $HgCl_2,\;HgBr_2,\;HgI_2$의 Ion-Pair 形成恒數를, Hg電極/$HgX_2$ 또는 $HgX_2$+NaX//亞鉛아마르감 參照電極과 같은 Cell의 構成으로서 電位差法에 依하여 測定하였다.

  • PDF

Kinetics and Mechanism of Triethylamine Catalysed Michael Addition of Benzenethiol to 1-(2-Nitrovinyl)benzene in Acetonitrile

  • Sarathi, P.A.;Gnanasekaran, C.;Shunmugasundaram, A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.790-794
    • /
    • 2008
  • Nucleophilic addition reaction of benzenethiols (PhSH) to 1-(2-nitrovinyl) benzenes ($\beta$ NS) in the presence of triethylamine (TEA) has been studied in acetonitrile at 25 ${^{\circ}C}$. The rate is first order with respect to [PhSH], [TEA] and [$\beta$ NS]. The reaction is found to proceed with the formation of ion-pair between benzenethiol and TEA. A suitable mechanism with the formation of an adduct between ion-pair and substrate in a slow step followed by its rearrangement to 1,2-addition product in a fast step has been proposed and corresponding rate law derived. From the rate law, the rate constants for the interaction between ion-pair and $\beta$NS have been evaluated. Interestingly, in both para-substituted substrates and benzenethiols the rate increases with the electron-withdrawing power of the substituents. The positive sign of $\rho_x$ in benzenethiols has been explained. The magnitude of cross-interaction constant, $\rho_{xy}$ is small (0.08). The magnitude of the Hammett $\rho_x$ values is higher than that of the Bronsted, $\beta_x$ values for benzenethiols. The kinetic isotope effect, $k_H/k_D$, is found to be greater than unity. A suitable transition state with simultaneous formation of $C_\beta$ -H and $B_\alpha$ -S bonds involving the ion-pair and $\beta$NS in a single concerted step has been proposed to account for these observations.

Effect of ion-pair complexation with bile acids on the bilary excretion and systemic distribution of organic drugs

  • Shim, Chang-Koo
    • Archives of Pharmacal Research
    • /
    • v.9 no.1
    • /
    • pp.49-54
    • /
    • 1986
  • Effect of sodium taurodeoxycholate (TDC) infused intravenously on the pharmacokinetics of methylene blue (MB) was studied in the rat to investigate the role of ion-pair complexation in the body on drug elimination and disposition. Distribution volume (Vd) of MB was increased significantly (p< 0.05) by TDC infusion. Considering together with the fact that apparent partition coefficient (APC) of MB between phosphate buffer (pH 7.4) and n-octanol was increased markedly by TDC, the increase in Vd seemed to be the result of decreased polarity of MB by ion-pair formation with TDC. But total body clearance (CLt) and biliary excretion clearance (CLbil) of MB were not increased significantly by TDC.

  • PDF

Counter Ion Effect on Photoinduced Electron Transfer Reaction between Ruthenium Complexes

  • Sonoyama, Noriyuki;Kaizu, Youkoh
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.481-486
    • /
    • 1995
  • Quenching experiments by photoinduced electron transfer between a charged donor and a neutral acceptor were carried out in acetonitrile, dichloromethane and mixed solvents of acetonitrile and dichloromethane. Tris(2, 2'-bipyridine) ruthenium(II) ($[Ru(bpy)_3]^{2+}$) which has 2+ charge and dicyanobis (2, 2'-bipyridine) ruthenium(II) ($Ru(bpy)_2(CN)_2$) which has no charge were used as electron donors, and a series of tris(${\beta}$-diketonato) ruthenium (III) was used as acceptor. In dichloromethane, $[Ru(bpy)_3]^{2+}$ and its counter ions ($ClO{_4}^-$) form ion pair. In the estimate of ${\Delta}G$ of electron transfer, the electrostatic potential between counter ions and product ion pair produced by electron transfer must be taken into account. A similar effect of counter ions was found in mixed solvents of 10, 30, 50, 70 and 90% acetonitrile ratio in volume. The effect of counter ion on ${\Delta}G$ became smaller with the increase in acetonitrile ratio. The result in mixed solvents suggests that $[Ru(bpy)_3]^{2+}$ and its counter ions form ion pair even in 90% acetonitrile solution.

  • PDF

Determination of Buprenorphine in Raw Material and Pharmaceutical Products Using Ion-pair Formation

  • Amanlou, Massoud;Khosravian, Peghah;Souri, Effat;Dadrass, Orkideh Ghorban;Dinarvand, Rasoul;Alimorad, Mohammad Massoud;Akbari, Hamid
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.2
    • /
    • pp.183-187
    • /
    • 2007
  • A simple and sensitive extractive spectrophotometric method has been described for the determination of buprenorphine either in raw material or in pharmaceutical formulations. The developed method is based on the formation of a colored ion-pair complex (1 : 1 drug/dye) of buprenorphine and bromocresol green (BCG) in buffer pH 3 and extracting in chloroform. The extracted complex shows absorbance maxima at 415 nm. Beer's law is obeyed in the concentration range of 1.32-100.81 μ g mL-1. The proposed method has been applied successfully for the determination of drug in commercial sublingual tablets and injectable dosage form. No significant interference was observed from the excipients commonly used as pharmaceutical aids with the assay procedure.

The Ion Transport Phenomena through the Liquid Membrane with Macrocyclic Compound (I). Mechanism of Potassium Ion Transport through $H_2O-CHl_3-H_2O$ System with Dibenzo-18-Crown-6 (마크로고리 화합물을 운반체로 하는 액체막을 통한 이온의 운반에 관한 연구 (제1보). Dibenzo-18-Crown-6-(DBC)/$H_2O-CHCl_3-H_2O$계에서 칼륨이온의 운반 메카니즘)

  • Yoon, Chang-Ju;Lee, Shim-Sung;Koo, Chang-Hyun;Kim, Si-Joong
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.3
    • /
    • pp.163-169
    • /
    • 1984
  • The transport rates of $K^+$ion through CHCl$_3$ liquid membrane containing dibenzo-18-crown-6(DBC) as a carrier molecule have been determined at $25^{\circ}C$. The transport rates depend highly on the ion concentration and on the nature of anion. It is concluded that $K^+$ions are transported in the form of ion-pair. In the case of potassium picrate, however, it is found that the transport proceeds with the formation of the incomplete ion-pair in the concentration less than 1.0 ${\times}10^{-3}$M of picrate, while with the complete formation of ion-pair in the concentration more than 1.0 ${\times}10^{-3}$M of picrate. Seven steps of the transport process are suggested and they can be illustrated in terms of energy barrier model as a function of the position of ionic species in the membrane.

  • PDF