• Title/Summary/Keyword: Ion sputtering

Search Result 602, Processing Time 0.026 seconds

Effect of Ar ion Sputtering on the Surface Electronic Structure of Indium Tin Oxide

  • Lee, Hyunbok;Cho, Sang Wan
    • Applied Science and Convergence Technology
    • /
    • v.25 no.6
    • /
    • pp.128-132
    • /
    • 2016
  • We investigated the effect of Ar ion sputtering on the surface electronic structure of indium tin oxide (ITO) using X-ray and ultraviolet photoelectron spectroscopy (XPS and UPS) measurements with increasing Ar ion sputtering time. XPS measurements revealed that surface contamination on ITO was rapidly removed by Ar ion sputtering for 10 s. UPS measurements showed that the work function of ITO increased by 0.2 eV after Ar ion sputtering for 10 s. This increase in work function was attributed to the removal of surface contamination, which formed a positive interface dipole relative to the ITO substrate. However, further Ar ion sputtering did not change the work function of ITO although the surface stoichiometry of ITO did change. Therefore, removing the surface contamination is critical for increasing the work function of ITO, and Ar ion sputtering for a short time (about 10 s) can efficiently remove surface contamination.

Applications of Ar Gas Cluster Ion Beam Sputtering to Ta2O5 thin films on SiO2/Si (100)

  • Park, Chanae;Chae, HongChol;Kang, Hee Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.119-119
    • /
    • 2015
  • Ion beam sputtering has been widely used in Secondary Ion Mass Spectrometry (SIMS), X-ray Photoelectron Spectroscopy (XPS), and Auger Electron Spectroscopy (AES) for depth profile or surface cleaning. However, mainly due to severe matrix effects such as surface composition change from its original composition and damage of the surface generated by ion beam bombardment, conventional sputtering skills using mono-atomic primary ions with energy ranging from a few hundred to a thousand volts are not sufficient for the practical surface analysis of next-generation organic/inorganic device materials characterization. Therefore, minimization of the surface matrix effects caused by the ion beam sputtering is one of the key factors in surface analysis. In this work, the electronic structure of a $Ta_2O_5$ thin film on $SiO_2/Si$ (100) after Ar Gas Cluster Ion Beam (GCIB) sputtering was investigated using X-ray photoemission spectroscopy and compared with those obtained via mono-atomic Ar ion beam sputtering. The Ar ion sputtering had a great deal of influence on the electronic structure of the oxide thin film. Ar GCIB sputtering without sample rotation also affected the electronic structure of the oxide thin film. However, Ar GCIB sputtering during sample rotation did not exhibit any significant transition of the electronic structure of the $Ta_2O_5$ thin films. Our results showed that Ar GCIB can be useful for potential applications of oxide materials with sample rotation.

  • PDF

The transient sputtering yield change of an amorphous Si layer by low energy $O_2^{+}$ and $Ar^{+}$ ion bombardment

  • Shin, Hye-Chung;Kang, Hee-Jae;Lee, Hyung-Ik;Moon, Dae-Won
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.92-94
    • /
    • 2003
  • The sputtering yield change of an amorphous Si layer on Si(100) was measured quantitatively for 0.5 keV $O_2^{+}$ and $Ar^{+}$ ion bombardment with in suit MEIS. In the case of 0.5 keV $O_2^{+}$ ion bombardment, at the initial stage of sputtering before surface oxidation, the sputtering yield of Si was 1.4 (Si atoms/$O_2^{+}$) and then decreased down to 0.06 at the ion dose of $3\times10^{16}O_2\;^{+}\textrm{/cm}^2$. In the case of 0.5 keV $Ar^{+}$ ion bombardment, the sputtering yield of Si for the surface normal incidence was 0.56 at the ion dose of 2.5 ${\times}$ 10$^{15}$ $Ar^{+}\textrm{cm}^2$, and rapidly saturated to 1.2 at dose of $7.5\times10^{15}Ar^+\textrm{cm}^2$. For the incidence angle of 80 from surface normal, the sputtering yield of Si was saturated to about 1.4 at the initial stage of sputtering. The surface transient effects, caused by change in sputtering yield at the initial stage of sputtering can be negligible when 0.5 keV $Ar^{+}$ ion at extremely grazing angle was used for sputter depth profiling.g.

Sputtering of Solid Surfaces at Ion Bombardment

  • Kang, Hee-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.20-20
    • /
    • 1998
  • I Ion beam technology has recently attracted much interest because it has exciting t technological p아:ential for surface analysis, ion beam mixing, surface cleaning and etching i in thin film growth and semiconductor fabrication processes, etc. Es야~cially, ion beam s sputtering has been widely used for sputter depth profiling with x-photoelectron S spectroscopy (XPS) , Auger electron s$\pi$~troscopy(AES), and secondary-ion mass S야i따oscopy(SIMS). However, The problem of surface compositional ch없1ge due to ion b bombardment remains to be understo여 없ld solved. So far sputtering processes have been s studied by s따face an외ysis tools such as XPS, AES, and SIMS which use the sputtering p process again. It would be improbable to measure the modified surface composition profiles a accurately due to ion beam bombardment with surface analysis techniques based on sputter d depth profiling. However, recently Medium energy ion scattering spectroscopy(MEIS) has b been applied to study the sputtering of solid surface at ion bombardment and has been p proved that it has been extremely valuable in probing the surface composition 뻐d s structure nondestructively and quantita디vely with less than 1.0 nm depth resolution. To u understand the sputtering processes of solid surface at ion bombardment, The Molecular D Dynamics(MD) and Monte Carlo(MC) simulation has been used and give an intimate i insight into the sputtering processes of solid surfaces. In this presentation, the sputtering processes of alloys and compound samples at ion b bombardment will be reviewed and the MEIS results for the Ar+ sputter induced altered l layer of the TazOs thin film 뻐dd없nage profiling of Ar+ ion sputt얹"ed Si(100) surface will b be discussed with the results of MD and MC simulation.tion.

  • PDF

Linear Ion Beam Applications for Roll-to-Roll Metal Thin Film Coatings on PET Substrates

  • Lee, Seunghun;Kim, Do-Geun
    • Applied Science and Convergence Technology
    • /
    • v.24 no.5
    • /
    • pp.162-166
    • /
    • 2015
  • Linear ion beams have been introduced for the ion beam treatments of flexible substrates in roll-to-roll web coating systems. Anode layer linear ion sources (300 mm width) were used to make the linear ion beams. Oxygen ion beams having an ion energy from 200 eV to 800 eV used for the adhesion improvement of Cu thin films on PET substrates. The Cu thin films deposited by a conventional magnetron sputtering on the oxygen ion beam treated PET substrates showed Class 5 adhesion defined by ASTM D3359-97 (tape test). Argon ion beams with 1~3 keV used for the ion beam sputtering deposition process, which aims to control the initial layer before the magnetron sputtering deposition. When the discharge power of the linear ion source is 1.2 kW, static deposition rate of Cu and Ni were 7.4 and $3.5{\AA}/sec$, respectively.

A Study on the Sputtering System Using Ion Plating Technique (이온 플레이팅 응용 스퍼터링 장치에 관한 연구)

  • Jeong, Yeon-Ho;Choi, Young-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2179-2183
    • /
    • 2007
  • In this paper, to produce sheet plasma with high density for ion plating, we designed magnetic circuit of ion plating device consisting of solenoid coil and rectangular permanent magnet. And, we analyzed the effects of the magnetic field distribution using FEM (Finite Element Methode). Additionally, we made a sputtering system including ion plating technique on the basis of the design and verified the possibility of the sheet plasma application for advanced sputter system.

The influence of sputtering rate during depth profiling (Depth Profiling에서 Sputtering Rate의 영향)

  • 김주광;성인복;김태준;오상훈;강석태
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.3
    • /
    • pp.162-167
    • /
    • 2003
  • To find the concentration according to the depth-direction of ions implanted in the sample, with sputtering of the sample surface, one needs the depth profiling of ion implanted in the sample. On measuring of depth profiling, the sputtering rate to affect depth direction, is calculated by SRIM simulation. When ion is implanted in the sample, the atomic density of the sample rises up a little, and it alters sputtering yield. This alteration then causes differences of sputtering rate to affect depth-direction, on measuring of depth profiling. With the usage of SRIM Monte Carlo simulation code, one calculates sputtering rate, with sputtering yield by the alteration of atomic density of the sample through ion implantation. As a result, it goes to prove that its difference affects depth distribution, on measuring of depth profiling.

The surface propery change of multi-layer thin film on ceramic substrate by ion beam sputtering (이온빔 스퍼터링법에 의한 다층막의 표면특성변화)

  • Lee, Chan-Young;Lee, Jae-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.259-259
    • /
    • 2008
  • The LTCC (Low Temperature Co-fired Ceramic) technology meets the requirements for high quality microelectronic devices and microsystems application due to a very good electrical and mechanical properties, high reliability and stability as well as possibility of making integrated three dimensional microstructures. The wet process, which has been applied to the etching of the metallic thin film on the ceramic substrate, has multi process steps such as lithography and development and uses very toxic chemicals arising the environmental problems. The other side, Plasma technology like ion beam sputtering is clean process including surface cleaning and treatment, sputtering and etching of semiconductor devices, and environmental cleanup. In this study, metallic multilayer pattern was fabricated by the ion beam etching of Ti/Pd/Cu without the lithography. In the experiment, Alumina and LTCC were used as the substrate and Ti/Pd/Cu metallic multilayer was deposited by the DC-magnetron sputtering system. After the formation of Cu/Ni/Au multilayer pattern made by the photolithography and electroplating process, the Ti/Pd/Cu multilayer was dry-etched by using the low energy-high current ion-beam etching process. Because the electroplated Au layer was the masking barrier of the etching of Ti/Pd/Cu multilayer, the additional lithography was not necessary for the etching process. Xenon ion beam which having the high sputtering yield was irradiated and was used with various ion energy and current. The metallic pattern after the etching was optically examined and analyzed. The rate and phenomenon of the etching on each metallic layer were investigated with the diverse process condition such as ion-beam acceleration energy, current density, and etching time.

  • PDF

Analysis of Ion Beam-Solid Interactions for Nano Fabrication (나노 패터닝을 위한 이온빔-고체 상호작용 분석)

  • Kim H.B.;Hobler G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.581-584
    • /
    • 2005
  • Ion beam processing is one of the key technologies to realize mastless and resistless sub 50nm nano fabrication. Unwanted effects, however, may occur since an energetic ion can interact with a target surface in various ways. Depending on the ion energy, the interaction can be swelling, deposition, sputtering, re-deposition, implantation, damage, backscattering and nuclear reaction. Sputtering is the fundamental mechanisms in ion beam induced direct patterning. Re-deposition and backscattering are unwanted mechanisms to avoid. Therefore understanding of ion beam-solid interaction should be advanced for further ion beam related research. In this paper we simulate some important interaction mechanisms between energetic incident ions and solid surfaces and the results are compared with experimental data. The simulation results are agreed well with experimental data.

  • PDF

Formation of Crystalline Copper Thin Films by a Sputtering-assisted Magnetic Field System at Room Temperature

  • Kim, Hyun Sung
    • Applied Science and Convergence Technology
    • /
    • v.27 no.1
    • /
    • pp.1-4
    • /
    • 2018
  • A sputtering-assisted magnetic field system was successfully developed for depositing crystalline Cu thin films at room temperature. This system employs a plasma source and an ion-beam gun with two magnetic field generators, which is covered with sputtering target and the ion-beam gun, simultaneously serving as sputtering plasma and a magnetic field generator. The formation of crystalline Cu thin films at room temperature was dominated by magnetic fields, which was revealed by preliminary experiments. This system can be employed for producing crystalline metal thin films at room temperature.