• 제목/요약/키워드: Ionizing image

검색결과 22건 처리시간 0.021초

Image Guided Radiation Therapy

  • Ui-Jung Hwang;Byong Jun Min;Meyoung Kim;Ki-Hwan Kim
    • 한국의학물리학회지:의학물리
    • /
    • 제33권4호
    • /
    • pp.37-52
    • /
    • 2022
  • Over the past decades, radiation therapy combined with imaging modalities that ensure optimal image guidance has revolutionized cancer treatment. The two major purposes of using imaging modalities in radiotherapy are to clearly delineate the target prior to treatment and set up the patient during radiation delivery. Image guidance secures target position prior to and during the treatment. High quality images provide an accurate definition of the treatment target and the possibility to reduce the treatment margin of the target volume, further lowering radiation toxicity and improving the quality of life of cancer patients. In this review, the various types of image guidance modalities used in radiation therapy are distinguished into ionized (kilovoltage and megavoltage image) and nonionized imaging (magnetic resonance image, ultrasound, surface imaging, and radiofrequency). The functional aspects, advantages, and limitation of imaging using these modalities are described as a subsection of each category. This review only focuses on the technological viewpoint of these modalities and any clinical aspects are omitted. Image guidance is essential, and its importance is rapidly increasing in modern radiotherapy. The most important aspect of using image guidance in clinical settings is to monitor the performance of image quality, which must be checked during the periodic quality assurance process.

치과 임상에서 MRI의 활용 (Application of MRI in dentistry: Radiation free image)

  • 전국진
    • 대한치과의사협회지
    • /
    • 제57권11호
    • /
    • pp.700-707
    • /
    • 2019
  • On account of the dentistry mainly deals with hard tissues such as teeth and bones, CBCT and CT are common imaging modality in clinics. Recently, insurance coverage of MRI has been extended to head and neck region. In addition, unlike CBCT or CT, ionizing radiation is not used, the demand for MRI is gradually increasing in dentistry. Even though, many dentists still think that MRI is a difficult diagnostic tool and they are not confident when to use it. Therefore, the objective of this manuscript is to help the dental clinicians to access easily on MRI by introducing the overview, application and precautions of this imaging tool.

  • PDF

구강악안면영역에서 초음파영상 진단 (Clinical Usefulness of Ultrasonography in Oral and Maxillofacial Regions)

  • 오송희;최용석
    • 대한치과의사협회지
    • /
    • 제57권11호
    • /
    • pp.690-699
    • /
    • 2019
  • Ultrasound sonography(US) is used to evaluate various diseases of maxillofacial region including salivary glands, soft tissue and jaw lesions because of easy accessibility and no hazard of ionizing radiation. Also, US can offer dynamic study showing real-time images during diagnostic or surgical procedure. US images provide accurate information about the internal features of lesions on the jaw prior to surgical treatment. Doppler images are used to visualize the vascular distribution of the lesions and to provide additional information to enhance diagnostic value. Nevertheless, the clinical application of US imaging is limited in the dental field. This is due to the lack of knowledge about the US image and the image characteristics of the anatomical structures. It is necessary to evaluate the diagnostic value of US and evaluate its usefulness by looking at clinical cases using US images. Therefore, US imaging may be recommended as an assistant image in evaluating jaw lesions. US images provided accurate information about the internal structure of lesions on the jaw prior to surgical treatment, and diagnostic value was enhanced by visualizing the vascular distribution of the lesion using doppler imaging.

  • PDF

Single Particle Irradiation System to Cell (SPICE) at NIRS

  • Yamaguchi, Hiroshi;Ssto, Yukio;Imaseki, Hitoshi;Yasuda, Nakahiro;Hamano, Tsuyoshi;Furusawa, Yoshiya;Suzuki, Masao;Ishikawa, Takehiro;Mori, Teiji;Matsumoto, Kenichi;Konishi, Teruaki;Yukawa, Masae;Soga, Fuminori
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.267-268
    • /
    • 2002
  • Microbeam is a new avenue of radiation research especially in radiation biology and radiation protection. Selective irradiation of an ionizing particle to a targeted cell organelle may disclose such mechanisms as signal transaction among cell organelles and cell-to-cell communication in the processes toward an endpoint observed. Bystander effect, existence of which is clearly evidenced by application of the particle microbeam to biological experiments, suggests potential underestimation in the conventional risk estimation at low particle fluence rates, such as environment of space radiations in ISS (International Space Station). To promote these studies we started the construction of our microbeam facility (named as SPICE) to our HVEE Tandem accelerator (3.4 MeV proton and 5.1 MeV $^4$He$\^$2+/). For our primary goal, "irradiation of single particle to cell organelle within a position resolution of 2 micrometer in a reasonable irradiation time", special features are considered. Usage of a triplet Q magnet for focussing the beam to submicron of size is an outstanding feature compared to facilities of other institutes. Followings are other features: precise position control of cell dish holder, design of the cell dish, data acquisition of microscopic image of a cell organelle (cell nucleus) and data processing, a reliable particle detection, soft and hard wares to integrate all these related data, to control and irradiate exactly determined number of particles to a targeted spot.

  • PDF

비전리 방사선 (근적외선) 기반 의료영상 활용 가능성 평가: 당뇨발 (The Evaluation of Non-Ionizing Radiation (Near-Infrared Radiation) based Medical Imaging Application : Diabetes Foot)

  • 정영진;신철원;안성민;홍준용;안윤진;임청환
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제39권3호
    • /
    • pp.399-406
    • /
    • 2016
  • 비전리-방사선의 일종인 근적외선은 비침습적이고, 비전리성을 가지며, 생체 내 높은 투과성을 가지는 전자기파로, 진단을 위한 의료영상분야에 전 세계적으로 관심이 증가하여 그 활용 가능성이 활발히 연구되어지고 있다. 그러나 현재 국내에서 근적외선 의료영상의 활용은 극히 제한되어 있으며, 큰 관심을 가지고 있지 못하여, 새롭게 형성되는 근적외선 기반 의료영상 분야의 방사선사의 대응 역량의 강화가 필요시 된다. 본 연구에서는 근적외선의 특징 및 영상화 원리를 간략히 소개하고, 이를 이용한 최신의 연구 주제 및 세계적인 연구 동향을 소개함으로서 국내 방사선사의 역량을 강화하고자 한다. 특히, 임상적 활용 가능성이 매우 높은 상처 및 당뇨발등의 연구 주제에 대해서 소개하여, 이 분야의 발전을 가속화 시키는데 기여하고자 한다.

MRI-Guided Gadolinium Neutron Capture Therapy

  • Ji-Ae Park;Jung Young Kim;Hee-Kyung Kim
    • 대한방사성의약품학회지
    • /
    • 제8권2호
    • /
    • pp.113-118
    • /
    • 2022
  • Gadolinium neutron capture therapy (Gd-NCT) is a precision radiation therapy that kills cancer cells using the neutron capture reaction that occurs when 157Gd hits thermal neutrons. 157Gd has the highest thermal neutron capture cross section of 254,000 barns among stable isotopes in the periodic table. Another stable isotope, 155Gd, also has a high thermal neutron trapping area (~ 60,700 barns), so gadolinium that exists in nature can be used as a Gd-NCT drug. Gd-NCT is a mixed kinetic energy of low-energy and high-energy ionizing particles, which can be uniformly distributed throughout the tumor tissue, thereby solving the disadvantage of heterogeneous dose distribution in tumor tissue. The Gd complexes of small-sized molecule are widely used as contrast agents for magnetic resonance imaging (MRI) in clinical practice. Therefore, these compounds can be used not only for diagnosis but also therapy when considering the concept of Gd-NCT. This multifunctional trial can look forward to new medical advance into NCT clinical practices. In this review, we introduce gadolinium compounds suitable for Gd-NCT and describe the necessity of image guided Gd-NCT.

근적외선 분광법 및 확산 광 영상법의 최근 연구 동향 (Medical Applications of Near Infrared Spectroscopy and Diffuse Optical Imaging (Review))

  • 이승덕;권기운;고달권;김법민
    • 대한의용생체공학회:의공학회지
    • /
    • 제29권2호
    • /
    • pp.89-98
    • /
    • 2008
  • NIRS (Near-infrared Spectroscopy) and DOI (Diffuse Optical Imaging) are relatively new, non-invasive, and non-ionizing methods that measure or image optical properties (Scattering and Absorption Coefficient) and physiological properties (Water Fraction, concentration of Oxy-, Deoxy-Hemoglobin, Cytochrome Oxidase, etc) of biological tissues. In this paper, three different types of NIRS systems, mathematical modeling, and reconstruction algorithms are described. Also, recent applications such as functional brain imaging, optical mammography, NIRS based BMI (Brain-Machine Interface), and small animal study are reviewed.

치과방사선영상 검사는 위험한 술식인가? (Are dental radiographs dangerous?)

  • 이병도
    • 대한치과의사협회지
    • /
    • 제54권2호
    • /
    • pp.155-162
    • /
    • 2016
  • Radiographs can help in the diagnosis and treatment planning, but the exposure to ionizing radiation may elevate the risk of developing cancer in a person's lifetime. The objective of this review is to briefly summarize 1) radiation risk, especially cancer risks associated with diagnostic imaging, 2) linear, non-threshold (LNT) hypothesis, 3) the risks of radiation exposure to a fetus, and 4) the campaign of Image Gently. The individual risk of radiation-related cancer from any single medical imaging procedure is extremely small and it is not likely to be cancer risk at doses lower than 100 mGy, but patients may be harmed by avoiding diagnostic imaging due to fear of radiation hazard. Dentists need to understand the radiation doses delivered by various radiographic techniques and the acceptable exposure thresholds to effectively advise the patient and to reduce the unnecessary radiation

  • PDF

A Review of Organ Dose Calculation Tools for Patients Undergoing Computed Tomography Scans

  • Lee, Choonsik
    • Journal of Radiation Protection and Research
    • /
    • 제46권4호
    • /
    • pp.151-159
    • /
    • 2021
  • Background: Computed tomography (CT) is one of the crucial diagnostic tools in modern medicine. However, careful monitoring of radiation dose for CT patients is essential since the procedure involves ionizing radiation, a known carcinogen. Materials and Methods: The most desirable CT dose descriptor for risk analysis is the organ absorbed dose. A variety of CT organ dose calculators currently available were reviewed in this article. Results and Discussion: Key common elements included in CT dose calculators were discussed and compared, such as computational human phantoms, CT scanner models, organ dose database, effective dose calculation methods, tube current modulation modeling, and user interface platforms. Conclusion: It is envisioned that more research needs to be conducted to more accurately map CT coverage on computational human phantoms, to automatically segment organs and tissues for patient-specific dose calculations, and to accurately estimate radiation dose in the cone beam computed tomography process during image-guided radiation therapy.

디지털 래디오그라피의 신호 및 잡음 특성에 대한 방사선 영향에 관한 연구 (Investigation of Radiation Effects on the Signal and Noise Characteristics in Digital Radiography)

  • 김호경;조민국
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권6호
    • /
    • pp.756-767
    • /
    • 2007
  • For the combination of phosphor screens having various thicknesses and a photodiode array manufactured by complementary metal-oxide-semiconductor (CMOS) process, we report the observation of image-quality degradation under the irradiation of 45-kVp spectrum x rays. The image quality was assessed in terms of dark pixel signal, dynamic range, modulation-transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). For the accumulation of the absorbed dose, the radiation-induced increase both in dark signal and noise resulted in the gradual reduction in dynamic range. While the MTF was only slightly affected by the total ionizing dose, the noise power in the case of $Min-R^{TM}$ screen, which is the thinnest one among the considered screens in this study, became larger as the total dose was increased. This is caused by incomplete correction of the dark current fixed-pattern noise. In addition, the increase tendency in NPS was independent of the spatial frequency. For the cascaded model analysis, the additional noise source is from direct absorption of x-ray photons. The change in NPS with respect to the total dose degrades the DQE. However, with carefully updated and applied correction, we can overcome the detrimental effects of increased dark current on NPS and DQE. This study gives an initial motivation that the periodic monitoring of the image-quality degradation is an important issue for the long-term and healthy use of digital x-ray imaging detectors.