• Title/Summary/Keyword: Iris camera

Search Result 65, Processing Time 0.032 seconds

A Study on Iris Image Restoration Based on Focus Value of Iris Image (홍채 영상 초점 값에 기반한 홍채 영상 복원 연구)

  • Kang Byung-Jun;Park Kang-Ryoung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.2 s.308
    • /
    • pp.30-39
    • /
    • 2006
  • Iris recognition is that identifies a user based on the unique iris texture patterns which has the functionalities of dilating or contracting pupil region. Iris recognition systems extract the iris pattern in iris image captured by iris recognition camera. Therefore performance of iris recognition is affected by the quality of iris image which includes iris pattern. If iris image is blurred, iris pattern is transformed. It causes FRR(False Rejection Error) to be increased. Optical defocusing is the main factor to make blurred iris images. In conventional iris recognition camera, they use two kinds of focusing methods such as lilted and auto-focusing method. In case of fixed focusing method, the users should repeatedly align their eyes in DOF(Depth of Field), while the iris recognition system acquires good focused is image. Therefore it can give much inconvenience to the users. In case of auto-focusing method, the iris recognition camera moves focus lens with auto-focusing algorithm for capturing the best focused image. However, that needs additional H/W equipment such as distance measuring sensor between users and camera lens, and motor to move focus lens. Therefore the size and cost of iris recognition camera are increased and this kind of camera cannot be used for small sized mobile device. To overcome those problems, we propose method to increase DOF by iris image restoration algorithm based on focus value of iris image. When we tested our proposed algorithm with BM-ET100 made by Panasonic, we could increase operation range from 48-53cm to 46-56cm.

The Improvement of Performance in an Ultra small Camera Iris-Shutter Device using Topology Optimization (최적화 기법을 사용한 초소형 카메라 조리개 셔터장치의 성능향상)

  • Park, Soon-Ok;Yoo, Jeong-Hoon
    • Transactions of the Society of Information Storage Systems
    • /
    • v.5 no.2
    • /
    • pp.53-57
    • /
    • 2009
  • This study is concerned with the design of a camera iris-shutter device for producing force. The camera iris-shutter with yoke should have a smaller size and a bigger magnetic force than the previous model. Since the induced magnetic force operates shutter movement, the magnetic force maximization for a given input current is an important issue. To achieve the goal, new system is designed by the topology optimization method. The design is refined through the design of experiments to find the detail camera iris shutter design satisfying design constraints.

  • PDF

Development of High Resolution Iris Camera Module using IoT Device (IoT 디바이스를 활용한 고해상도 홍채 카메라 모듈 개발)

  • Seo, Jin-beom;Cho, Young-bok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.3
    • /
    • pp.371-377
    • /
    • 2020
  • Currently used iris cameras are expensive and have many limitations in their use. Existing iris cameras are inconvenient in interworking with newly developed software, and light reflections generated during iris photography are inadequate for medical use. Therefore, it is impossible to utilize the existing camera to take an image by yourself. In this paper, the iris camera is newly constructed so that the iris can be photographed by ourselves and the area of interest can be seen well. Anyone can easily wear glasses-type iris cameras to acquire images using IoT devices, and the acquired images are linked to the iris analysis program and used to read genetic weak parts. The proposed iris camera module automatically provides light reflection, shake, and accurate focus when capturing images, increasing the accuracy of image analysis to 91.49%. In addition, we have proved through experiments that one image processing time is fast as 0.007ms due to accurate image input.

Research on the efficient illumination method in iris recognition at a distance (원거리 홍채 인식에서 효율적 조명 조사방법에 관한 연구)

  • Jo, Hyun-Su;Bae, Kwang-Hyuk;Park, Kang-Ryoung;Kim, Jai-Hie
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.969-970
    • /
    • 2008
  • This paper proposes illumination-efficient iris image capturing method. face capture method for extraction of iris pattern with one high resolution camera needs a large scale near infrared illumination. we replace high-resolution camera with co-optic-axial combination between wide view camera and narrow view camera. because this method needs small scale illumination that illuminate only narrow camera viewing angle, we can capture iris pattern image with small scale near infrared illumination.

  • PDF

A Study on Multi-modal Near-IR Face and Iris Recognition on Mobile Phones (휴대폰 환경에서의 근적외선 얼굴 및 홍채 다중 인식 연구)

  • Park, Kang-Ryoung;Han, Song-Yi;Kang, Byung-Jun;Park, So-Young
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.2
    • /
    • pp.1-9
    • /
    • 2008
  • As the security requirements of mobile phones have been increasing, there have been extensive researches using one biometric feature (e.g., an iris, a fingerprint, or a face image) for authentication. Due to the limitation of uni-modal biometrics, we propose a method that combines face and iris images in order to improve accuracy in mobile environments. This paper presents four advantages and contributions over previous research. First, in order to capture both face and iris image at fast speed and simultaneously, we use a built-in conventional mega pixel camera in mobile phone, which is revised to capture the NIR (Near-InfraRed) face and iris image. Second, in order to increase the authentication accuracy of face and iris, we propose a score level fusion method based on SVM (Support Vector Machine). Third, to reduce the classification complexities of SVM and intra-variation of face and iris data, we normalize the input face and iris data, respectively. For face, a NIR illuminator and NIR passing filter on camera are used to reduce the illumination variance caused by environmental visible lighting and the consequent saturated region in face by the NIR illuminator is normalized by low processing logarithmic algorithm considering mobile phone. For iris, image transform into polar coordinate and iris code shifting are used for obtaining robust identification accuracy irrespective of image capturing condition. Fourth, to increase the processing speed on mobile phone, we use integer based face and iris authentication algorithms. Experimental results were tested with face and iris images by mega-pixel camera of mobile phone. It showed that the authentication accuracy using SVM was better than those of uni-modal (face or iris), SUM, MAX, NIN and weighted SUM rules.

An Enhanced Method for Detecting Iris from Smartphone Images in Real-Time (스마트폰 영상에서의 개선된 실시간 눈동자 검출 방법)

  • Kim, Seong-Hoon;Han, Gi-Tae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.9
    • /
    • pp.643-650
    • /
    • 2013
  • In this paper, we propose a novel method for enhancing the detection speed and rate by reducing the computation in Hough Circle Transform on real-time iris detection of smartphone camera image. First of all, we find a face and eyes from input image to detect iris and normalize the iris region into fixed size to prevent variation of size for iris region according to distance from camera lens. Moreover, we carry out histogram equalization to get regular image in bright and dark illumination from smartphone and calculate minimal iris range that contains iris with the distance between corner of the left eye and corner of the right eye on the image. Subsequently, we can minimize the computation of iris detection by applying Hough Circle Transform on the range including the iris only. The experiment is carried out in two case with bright and dark illumination. Our proposed method represents that detection speed is 40% faster and detection rate is 14% better than existing methods.

Design of Image Recognition Module for Face and Iris Area based on Pixel with Eye Blinking (눈 깜박임 화소 값 기반의 안면과 홍채영역 영상인식용 모듈설계)

  • Kang, Mingoo
    • Journal of Internet Computing and Services
    • /
    • v.18 no.1
    • /
    • pp.21-26
    • /
    • 2017
  • In this paper, an USB-OTG (Uiversal Serial Bus On-the-go) interface module was designed with the iris information for personal identification. The image recognition algorithm which was searching face and iris areas, was proposed with pixel differences from eye blinking after several facial images were captured and then detected without any activities like as pressing the button of smart phone. The region of pupil and iris could be fast involved with the proper iris area segmentation from the pixel value calculation of frame difference among the images which were detected with two adjacent open-eye and close-eye pictures. This proposed iris recognition could be fast processed with the proper grid size of the eye region, and designed with the frame difference between the adjacent images from the USB-OTG interface with this camera module with the restrict of searching area in face and iris location. As a result, the detection time of iris location can be reduced, and this module can be expected with eliminating the standby time of eye-open.

Super-Resolution Iris Image Restoration using Single Image for Iris Recognition

  • Shin, Kwang-Yong;Kang, Byung-Jun;Park, Kang-Ryoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.2
    • /
    • pp.117-137
    • /
    • 2010
  • Iris recognition is a biometric technique which uses unique iris patterns between the pupil and sclera. The advantage of iris recognition lies in high recognition accuracy; however, for good performance, it requires the diameter of the iris to be greater than 200 pixels in an input image. So, a conventional iris system uses a camera with a costly and bulky zoom lens. To overcome this problem, we propose a new method to restore a low resolution iris image into a high resolution image using a single image. This study has three novelties compared to previous works: (i) To obtain a high resolution iris image, we only use a single iris image. This can solve the problems of conventional restoration methods with multiple images, which need considerable processing time for image capturing and registration. (ii) By using bilinear interpolation and a constrained least squares (CLS) filter based on the degradation model, we obtain a high resolution iris image with high recognition performance at fast speed. (iii) We select the optimized parameters of the CLS filter and degradation model according to the zoom factor of the image in terms of recognition accuracy. Experimental results showed that the accuracy of iris recognition was enhanced using the proposed method.

Multi-views face detection in Omni-directional camera for non-intrusive iris recognition (비강압적 홍채 인식을 위한 전 방향 카메라에서의 다각도 얼굴 검출)

  • 이현수;배광혁;김재희;박강령
    • Proceedings of the IEEK Conference
    • /
    • 2003.11b
    • /
    • pp.115-118
    • /
    • 2003
  • This paper describes a system of detecting multi-views faces and estimating their face poses in an omni-directional camera environment for non-intrusive iris recognition. The paper is divided into two parts; First, moving region is identified by using difference-image information. Then this region is analyzed with face-color information to find the face candidate region. Second part is applying PCA (Principal Component Analysis) to detect multi-view faces, to estimate face pose.

  • PDF

A study on Iris Recognition using Wavelet Transformation and Nonlinear Function

  • Hur Jung-Youn;Truong Le Xuan;Lee Sang-Kyu
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.357-362
    • /
    • 2005
  • Iris recognition system is the one of the most reliable biometries recognition system. An algorithm is proposed to determine the localized iris from the iris image received from iris input camera in client. For the first step, the algorithm determines the center of pupil. For the second step, the algorithm determines the outer boundary of the iris and the pupillary boundary. The localized iris area is transformed into polar coordinates. After performing three times Wavelet transformation, normalization was done using a sigmoid function. The converting binary process performs normalized value of pixel from 0 to 255 to be binary value, and then the converting binary process is compared pairs of two adjacent pixels. The binary code of the iris is transmitted to the server by the network. In the server, the comparing process compares the binary value of presented iris to the reference value in the database. The process of recognition or rejection is dependent on the value of Hamming Distance. After matching the binary value of presented iris with the database stored in the server, the result is transmitted to the client.