• Title/Summary/Keyword: Iron-filing

Search Result 6, Processing Time 0.032 seconds

TCE제거를 위한 반응층과 고정화층의 결합 실험

  • 조현희;박재우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.67-70
    • /
    • 2002
  • Remediation of groundwater contaminated with chlorinated organics, nitro aromatics, and heavy metals using zero valent iron (ZVI) filings has paid considerable attention in recent years. When the contaminants of high concentration leaked abundantly in subsurface environment, permeable reactive barrier technology using iron filing is taken a long time for the remediation of contaminated groundwater, The problem of contaminant shock is able to be solved using surfactant (hexadecyltrimethylammonium, HDTMA) modified bentonite (SMB) as immobilizing material. Therefore, the purpose of this research was to develop the combined remediation technology using conventional permeable reactive and immobilizing barrier for the enhanced decontamination of chlorinated compounds. Four column experiments were conducted to assess the performance of the mixed reactive materials with Ottawa sand, iron filing, and HDTMA-bentonite for trichloroethylene (TCE) removal under controlled groundwater flow conditions. TCE reduction rates with sand/iron filing/HDTMA-bentonite were highest among four column due to dechlorination of TCE by iron filing and sorption of TCE by SMB.

  • PDF

ZanF를 이용한 질산성 질소 환원 및 암모늄부산물 동시제거

  • 이승학;이광헌;이성수;박준범
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.107-110
    • /
    • 2003
  • Reduction of nitrate by zero valent iron (Fe$^{0}$ ) has been previously studied, but the proper treatment for the by-product of ammonium has not been reported. However, in terms of nitrogen contamination, ammonium may be regarded as another form of nitrogen contaminants since it can be oxidized to nitrate again under aerobic conditions. This study is focused on simultaneous removal of nitrate and its by-product of ammonium, with the ZanF (Zeolite anchored Fe), a product derived from zeolite modified by Fe(II) chloride followed by reduction with sodium borohydride. Batch experiments were performed without buffer at two different pH condition with ZanF, iron filing, Fe(II)-sorbed zeolite, and pure zeolite to estimate the nitrate reduction and the ammonium production. At higher pH, removal rate of nitrate was reduced in both ZanF and iron filings. ZnF removed 60 % of nitrate at initial pH of 3.3 with no production of ammonium, while iron filing showed equivalent production of ammonium to the reduced amount of nitrate. In terms of nitrogen contamination, ZanF removed about 60 % and 40 % at initial pH of 3.3 and 6, respectively, while iron filing presented negligible removal against total nitrogen including nitrate and ammonium.

  • PDF

복합오염물질제거를 위한 현장반응층 이용에 관한 연구

  • 조현희;박재우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.168-171
    • /
    • 2003
  • This research was conducted to assess the performance of the mixed reactive materials with sand, iron filings, and HDTMA-bentonite for trichloroethylene (TCE) and chromate removal under controlled groundwater flow conditions. TCE and chromate removal rates with the mixtures of iron filing/HDTMA-bentonite were highest among four columns due to reduction by iron filings and sorption by HDTMA-bentonite. The greater capacity of the mixed iron filing/HDTMA-bentonite compared HDTMA-bentonite was due to an enhanced chromate reduction in addition to chromate sorption. The presence of chromate caused greater inhibition of TCE removal in the column with iron filings, while the presence of TCE caused less inhibition of TCE. Also, nitrate caused the decrease in TCE removal relative to chloride. Nitrate ions may also significantly affect TCE reduction rates by competing for electrons with the chlorinated compounds. The anion and co-existed contaminants competing effects should be considered when designed permeable reactive barriers (PRBs) composed of zero valent iron for field applications to remediate TCE and chromate.

  • PDF

Analysis of Iron-filings Trapping Characteristics on Concrete Slab Track using Permanent Magnet (영구자석을 이용한 콘크리트 궤도상의 쇠가루 포집장치 특성 분석 연구)

  • Park, Chan-Bae;Lee, Ju
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.4
    • /
    • pp.348-353
    • /
    • 2011
  • Iron fillings which were accumulated around the rail was often the cause of abnormal signal in case of signaling equipment using rail as transmission line. Iron fillings were generated on curved section of railroad due to the friction between rail and wheel, and metro line company urged to find the way to remove these iron fillings, because these were often the cause of abnormal signal. Magnetic device for trapping iron fillings around concrete slab tracks is introduced. The characteristics of magnetic device were analyzed using basic design and numerical analysis method. Magnetic device for trapping iron fillings were examined for application to the train which were operating in commercial line.

Nitrate Reduction without Ammonium Release using Fe-loaded Zeolite

  • Lee Seunghak;Lee Kwanghun;Lee Sungsu;Park Junboum
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.1
    • /
    • pp.1-5
    • /
    • 2005
  • Nitrate reduction with zero valent iron $(Fe^0)$ has been extensively studied, but the proper treatment for ammonium byproduct has not been reported yet. In groundwater, however, ammonium is regarded as contaminant species, and particularly, its acceptable level is regulated to 0.5 mg-N/L. for drinking water. This study is focused on developing new material to reduce nitrate and properly remove ammonium by-products. A new material, Fe-loaded zeolite, is derived from zeolite modified by Fe(II) chloride followed by reduction with sodium borohydride. Batch experiments were performed without buffer at two different pH to evaluate the removal efficiency of Fe-loaded zeolite. After 80 hr reaction time, Fe loaded zeolite showed about $60\%$ nitrate removal at initial pH of 3.3 and $40\%$ at pH of 6 with no ammonium release. Although iron filing showed higher removal efficiency than Fe-loaded zeolite at each pH, it released a considerable amount of ammonium stoichiometrically equivalent to that of reduced nitrate. In terms of nitrogen species including $NO_3-N$ and $NH_4^+-N$, Fe-loaded zeolite removed about $60\%\;and\;40\%$ of nitrogen in residual solution at initial pH of 3.3 and 6, respectively, while the removal efficiency of iron filing was negligible.

The Classification of Manufacturing Work Processes to Develop Functional Work Clothes - With a Reference to the Automobile, Machine and Shipbuilding Industries -

  • Park, Ginah;Park, Hyewon;Bae, Hyunsook
    • Journal of Fashion Business
    • /
    • v.16 no.6
    • /
    • pp.21-35
    • /
    • 2012
  • In consideration of the injuries and deaths occurring at manufacturing sites due to the use of inappropriate work clothes or safety devices, this study aims to categorize manufacturing work processes to develop functional work clothes for heavy industries including the automobile, machine and shipbuilding industries in South Korea. Defining the features of the work environments and work postures of these industries provided for a categorization of the work processes which would enable the development of suitable work clothes for each work process' category. The results of the study based on a questionnaire survey are as follows: Work process category 1, including steel panel pressing and auto body assembly, final inspection (in automobile) and inspection (in machine), requires work clothes with upper body and arm mobility and performance to protect from the toxic fume factor. Work process category 2, consisting of welding (in automobile), cutting-and-forming (in machine) and attachment-and-construction (in shipbuilding), requires clothing elasticity, durability and heat and fire resistance. Work process category 3 comprising welding and grinding in the machine and shipbuilding industries, requires work clothes' tear resistance and elasticity, particularly for lateral bending mobility, and work clothes' sleeves' and pants' hemlines with sealed designs to defend against iron filing penetration, as well as incombustible and heat-resistant material performance. Finally, work process category 4, including painting in machine and shipbuilding, requires work clothes with waterproofing, air permeability, thermal performance, elasticity, durability and abrasion resistance.