• Title/Summary/Keyword: Irregular waves

Search Result 359, Processing Time 0.028 seconds

Generation of Real Sea Waves based on Spectral Method and Wave Direction Analysis (스펙트럴 방법에 의한 실해역파 재현 및 파 방향 해석)

  • Lee, Jin-Ho;Choi, Jae-Woong;Kang, Yun-Tae;Ha, Mun-Keun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.3
    • /
    • pp.212-219
    • /
    • 2005
  • Real sea waves in a towing wave basin have been generated using random periodic motion of the segmented wave makers and the wave reflections of sidewalls. Theoretically, the real sea waves can be described by the superposition of many random oblique waves. This paper introduces numerical real sea wave generation in a rectangular wave basin using spectral method that uses a superposition of orthogonal functions which have to satisfy the Laplace equation. Oblique regular waves, long crested irregular waves and real sea waves were simulated and met the requirement of sidewall wave reflection and wave absorption. MLM (Maximum Likelihood Method) and Spatial Fourier Transform were used in order to obtain propagated wave direction characteristics. The estimated results proved the usefulness of the method and the performances showed reasonable directional patterns comparing with generating patterns.

Application of a Regular Wave Model to Calculation of Irregular Wave Reflection from Perforated-Wall Caisson Breakwaters (불규칙파의 유공 케이슨 방파제로부터의 반사율 산정시 규칙파 모델 적용)

  • Suh Kyung Duck;Son Sang Young
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.205-208
    • /
    • 2002
  • Numerous studies have been performed to develop an analytical model that can predict the reflection of regular or irregular waves from a perforated-wall caisson breakwater. Though such irregular wave models as Suh et at. (2001) become available, regular wave models are still in extensive use because of their simplicity. In the present study, using the regular wave model of Fuggazza and Natale(1992), the reflection of irregular waves from a perforated-wall caisson breakwater was calculated in several different methods. First, the regular wave model was re-validated by the hydraulic model tests. Though the model somewhat over-predicted the reflection coefficients at larger values and under-predicted them at smaller values, overall agreement was pretty good between calculation and measurement. Then, the regular wave model was applied to calculate the irregular wave reflection in the experiments of Suh et at.(2001) and Bennett et al. (1992). In applying the regular wave model to irregular wave reflection, several different methods were used. The results showed that it is the most reasonable to use the regular wave model repeatedly for each frequency component of the irregular wave specuum with the root-mean-squared wave height for all the frequencies .

  • PDF

Downtime cost analysis of offloading operations under irregular waves in Malaysian waters

  • Patel, M.S.;Liew, M.S.;Mustaffa, Zahiraniza;Abdurasheed, Abdurrasheed Said;Whyte, Andrew
    • Ocean Systems Engineering
    • /
    • v.10 no.2
    • /
    • pp.131-161
    • /
    • 2020
  • The objective of this study was to evaluate the downtime cost of side-by-side offloading operations in Malaysian waters. With the help of a numerical time domain tool, the structure and cable response of moored FPSO vessel was simulated for heading and beam sea-states under irregular waves. The weather downtime was assessed by comparing the response under operational wave condition with the pre defined industrial safe offloading criteria. Additionally, two cases of cable failure were simulated for each sea-state. The novel study on downtime cost was presented for three different location of Malaysia subcontinent for which the location specific wave scatter diagram facilitated to estimate the probability of occurrence of operational wave condition. It was concluded that an unpredictable increment in wave height by 0.5 m can significantly impact the production cost.

Hydrodynamics of submersible aquaculture cage system using numerical model

  • Kim, Tae-Ho;Fredriksson, David W.;Decew, Judson
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.44 no.1
    • /
    • pp.46-56
    • /
    • 2008
  • A numerical model analysis was performed to analyze the motion and mooring tension response of submersible fish cage systems in irregular waves and currents. Two systems were examined: a submersible cage mooring with a single, high tension mooring and the same system, but with an additional three point mooring. Using a Morison equation type model, simulations of the systems were conducted with the cage at the surface and submerged. Irregular waves(JONSWAP spectrum) with and without a co-linear current with a magnitude of 0.5m/s were simulated into the model as input parameters. Surge, heave and pitch dynamic calculations were made, along with tension responses in the mooring lines. Results were analyzed in both the time and frequency domains and linear transfer functions were calculated.

The Equivalent Value of the Linearized Method for the Ship Motion in Irregular Sea Waves (불규칙(不規則) 해양파(海洋波)에 대(對)한 선체운동(船體運動)의 등가선형화(等價線型化) 방법(方法)에 관(關)하여)

  • Bong-Ku,Woo
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.8 no.2
    • /
    • pp.25-34
    • /
    • 1971
  • The characters of linear response of ship among irregular waves were researched. But nonlinear characters of ship motion in irregular waves have not been considered. Then the author showed a method to linearize nonlinearity of damping coefficient of ship by making statistically equivalent linear theory and get equivalent gain K from the condition that the difference of variance between linear response and approximate response is minimum and show that the results of correlogram and spectrum, obtained from this method, for model 700 GT Ferry boat agree with the actual response. The author pays a particular attention not to the nonlinear element but to nonlinear system itself.

  • PDF

Numerical Study on the Local Motion of an A-frame for Deep Sea ROV Mother Ship in Irregular Waves (심해잠수정 모선의 A-프레임 시간영역 국부운동해석)

  • Hong, Do-Chun;Lee, Pan-Mook
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.105-108
    • /
    • 2003
  • The local motion at the top of an A-frame fixed on a research vessel for deep sea ROV floating in irregular waves is studied in the time-domain. The motion is analyzed in the time-domain using the convolution integral of the radiation forces. The memory effect functions and infinite frequency added masses are obtained from the solution of the three dimensional improved Green integral equation in the frequency domain by making use of the Fourier transformation.

  • PDF

Current -Drpth Refraction and Diffraction Model for Irregular Waves (수심 및 흐름의 영향에 의한 굴ㆍ회절을 고려한 불규칙파 모형)

  • Jeong, Shin-Taek;Chae, Jang-Won
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.3
    • /
    • pp.260-265
    • /
    • 1994
  • A new set of elliptic wave equations describing the deformations of irregular waves on a large-scale current field in water of irregular depth is given, and using finite difference scheme an efficient numerical method is also presented. The elliptic equations are solved in a similar way to Initial value problem. This method is extensively used for the calculation of wave spectral transformation. and computation results agree very well with experimental data (Hiraishi, 1991). Finally numerical examples are presented concerning the interactions between waves and currents over a mildly sloping beach and also over a mound.

  • PDF

Motion of a Very Large Floating Structure in Irregular waves (불규칙파 중 초대형 부유식 해양 구조물에 대한 운동)

  • H. Shin;H.Y. Lee;C.G. Lim;H.S. Shin;I.G. Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.4
    • /
    • pp.75-81
    • /
    • 2000
  • Very large floating structures have rather small motion characteristics except their ends, where the motions become much larger due to the elastic motion of the structure. This paper presents the numerical predictions of hydroelastic behaviors of VLFS in irregular waves. To predict motion responses of structure in irregular waves, the source-dipole distribution method and finite element method is used.

  • PDF

NUMERICAL SIMULATION OF REFRACT10N-DIFFRACTION OF WAVES C ONSIDERING BREAKING-INDUCED CURRENTS

  • Yoon, Sung-Bum;Lee, Jong-In;Lee, Chang-hoon;Park, Joon-Young
    • Water Engineering Research
    • /
    • v.3 no.3
    • /
    • pp.203-213
    • /
    • 2002
  • A wide-angle parabolic approximation equation model considering the interaction between wave and current is employed to simulate the deformation of irregular waves over a submerged shoal. It is found that the model gives qualitative agreements with experimental data for the cases of breaking waves around the shoal. Thus, the effect of breaking-induced current on the refraction-diffraction of waves is well understood.

  • PDF

Adaptive Re-reflecting Wave Control In Plunger Type Wave Maker System: Experiments In Two Dimensional Wave Basin

  • Park, Gun-Il;Kim, Ki-Jung;Park, Jae-Woong;Lee, Jin-Ho
    • Journal of Ship and Ocean Technology
    • /
    • v.7 no.1
    • /
    • pp.13-18
    • /
    • 2003
  • The control performances for active re-reflecting wave control suggested in the previous paper have been verified in cases of regular and irregular waves in a real two dimensional wave basin. For regular waves, the control performances are investigated in terms of reflection coefficients, expected amplitudes of propagating waves and wave absorbing capabilities after cessation of wave generation, compared with those of no-control cases. For irregular waves similar verification procedures were adopted. Though there are certain constraints due to the geometrical non-linearity of wave maker and certain nonlinear characteristics due to the near field and gravity waves these experiments show that the control logic could be useful in realizing re-reflecting wave control in conditions of real wave basin.