• Title/Summary/Keyword: Iso-valeric acid

Search Result 20, Processing Time 0.032 seconds

Determination of Malodor-causing Chemicals Produced by Microorganisms Inside Automobile (차량 내 미생물에 의해 생성되는 악취유발 화학물질의 분석)

  • Park, SangJun;Kim, EuiYong
    • KSBB Journal
    • /
    • v.29 no.2
    • /
    • pp.118-123
    • /
    • 2014
  • It was confirmed that malodor connected with an air-conditioner in an automobile is caused by microbial volatile organic compounds (MVOCs) produced by microorganisms getting into an air-conditioner when it is operating. Chemicals such as hydrogen sulfide, dimethyl sulfide, nbutyric acid, n-valeric acid, iso-valeric acid, n-octanol and toluene were detected above the odor threshold inside the automobile. The characteristics of a funky odor in the air blown into the automobile were due to detected sulfur compounds (hydrogen sulfide and dimethyl sulfide). Dimethyl sulfide was produced by microorganisms such as Aspergillus versicolor, Methylobacterium aquaticum, Herbaspirillum sp. and Acidovorax sp. In addition, the characteristics of a sour odor in the air blown into the automobile were due to detected organic acids (n-butyric acid, n-valeric acid and iso-valeric acid). N-valeric acid and iso-valeric acid were generated from Aspergillus versicolor, while iso-valeric acid was produced by Methylobacterium aquaticum. In addition, the odor intensity of the air blown into the automobile was affected by the concentration of detected sulfur compounds and organic acids. On the other hand, it is estimated that chemicals such as hydrogen sulfide, n-octanol and n-butyric acid detected in the air blown into the automobile were produced by non-identified species of microorganisms.

Alcohols and Volatile Organic Acids as Stimulants of Rhizomorph Production by Armillaria mellea (알코올 및 휘발성 유기산류가 뽕나무버섯의 균사속 생산에 미치는 영향)

  • Hong, Jai-Sik;Kim, Myung-Kon;Lee, Jai-Hong;Kim, Hyung-Moo
    • The Korean Journal of Mycology
    • /
    • v.18 no.3
    • /
    • pp.158-163
    • /
    • 1990
  • To investigate symbiotic relationship of 'Chunma (Gastrodia elata) and the rhizomorph of Armillaria mellea, volatile organic acids and alcoholic compounds which were considered to be contained in Gastrodia elata were tested to determine stimulatory effects on rhizomorph growth on a chemically defined medium. Also, volatile organic acids were isolated from Gastrodia elata and analyzed by gas chromatography. The growth of rhizomorph was stimulated by the presence of alcohols and volatile organic acids, but acetic acid and methanol were ineffective. In the presence of valeric acid and ethanol, Armillaria mellea produced abundant rhizomorph at concentrations of 0.1 and 1%, respectively. Ethanol and valeric acid supplemented at regular intervals of 3 days as lower concentrations in the medium stimulated the growth of Armillaria mellea. The concentrations of ethanol and valeric acid as low at 0.01% added 3 days intervals for 15 days were more effective than initial concentrations of 0.1 and 1% in stimulating rhizomorph development of Armillaria mellea. Eight kinds of volatile organic acids were identified and quantified by gas chromatography. The major compounds were n-propionic, valeric, iso-carproic and caproic acids, and the minor compounds were iso-butyric, butyric, iso-valeric and hepatanoic acids. Valeric acid was the most abundant among them.

  • PDF

VOLATILE CONSTITUENTS OF COOKED SQUID (피등어꼴뚜기의 자숙취에 관한 연구)

  • LEE Eung-Ho;KOIZUMI Chiaki;NONAKA Junsaku
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.11 no.4
    • /
    • pp.183-188
    • /
    • 1978
  • In this study, gas chromatographic analysis was carried out on volatile constituents of cooked squid for the object of obtaining information on the characteristic flavor of the cooked squid meat. The results obtained are as follows: 1) Methanol was the most effective solvent for the extraction of volatile constituents of squid meat. 2) Twenty five and thirty two peaks were detected from the condensate collected in cold traps which were immersed in ice water and dry ice-acetone, respectively. In these compounds, five kinds of volatile organic acids such as acetic acid, butyric acid, iso-valeric acid, valeric acid, and caproic acid were identified. 3) Eleven peaks were detected from the head space vapor collected in cold trap which is immersed in liquid nitrogen. Volatile amines identified in these components are as follows; methylamine, trimethylamine, dimethylamine, ethylamine, and iso-propylamine.

  • PDF

Synthesus of DL-1-Amino Alkyl Phosphonic Acids and Their Derivatives (II) (DL-1-Amino Alkyl Phosphonic Acid 와 그 유도체들의 합성 (ll))

  • Kyung Yeon Cho;Duck Chan Kim;Yong Joon Kim
    • Journal of the Korean Chemical Society
    • /
    • v.15 no.5
    • /
    • pp.275-280
    • /
    • 1971
  • Six previously unreported N-acylated-DL-1-amino alkyl phosphonic acids were prepared; N-Acetyl-DL-1-amino-3-methyl butyl phosphonic acidN-Benzoyl-DL-1-amino-2-methyl propyl phosphonic acidN-Benzoyl-DL-1-amino-3-methyl butyl phosphonic acidN-Benzoyl-DL-1-amino-2-methyl butyl phosphonic acidN-Acetyl-DL-1-amino-2-methyl propyl phosphonic acidN-Acetyl-DL-1-amino-2-methyl butyl phosphonic acidThe first four compounds were characterized, and the last two compounds were obtained in the crude oil state. The above three DL-1-amino-alkyl phosphonic acid were synthesized from iso-valeric acid, iso-caproic acid and ${\beta}$-methyl valeric acid using Hell-Volhard-Zelinsky reaction, the condensation reaction with triethyl-phosphite and the modified Curtius Reaction. Iso-caproic acid and ${\beta$-methyl valeric acid were prepared by the conventional methods.

  • PDF

Deodorization of Pig Feces by Fungal Application

  • Kim, T.I.;Ham, J.S.;Yang, C.B.;Kim, M.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.9
    • /
    • pp.1286-1290
    • /
    • 2004
  • This study was carried out to screen yeasts effective in reducing odor from pig feces. Three isolates from soil and compost sources were selected to treat pig feces. On the basis of morphological and biochemical characteristics, one isolate from compost was Candida rugosa, and two isolates from soil were Candida rugosa and Candida maris. These isolates showed deodorizing activity by reducing the concentration of ${NH}_3$ and R-${NH}_2$. Volatile fatty acids (VFA) are the specific malodorous compounds of pig feces, and the Candida maris from soil showed a 100% reduction of butyric, iso-butyric, and iso-valeric acid in 10% pig slurry medium. However, the Candida rugosa from compost showed a 100% reduction of butyric and iso-butyric acid while that from soil showed a 100% reduction of propionic, butyric acid and iso-valeric acid in the medium. Also, these yeasts were effective in reducing $NH_{4}-N$, soluble-N, and biological oxygen demand (BOD).

Studies on the Special Components of the Korean Tea-leaves (한국산(韓國産) 다엽(茶葉)의 특수성분(特殊成分)에 관(關)한 연구(硏究))

  • Kim, D.Y.;Jung, G.H.;Kim, K.;Ree, C.O.;Park, K.H.
    • Applied Biological Chemistry
    • /
    • v.22 no.2
    • /
    • pp.97-100
    • /
    • 1979
  • Tea leaves were harvested from the two cultivating sites in May, July and September. Tannin and caffeine, main factors for the quality of tea products, were analyzed and compared with the wild tea leaves and the cultivated. Aroma components of two varieties of tea leaves harvested in September were analyzed by gas-chromatographic method. The results obtained were as follows. 1. Tannin contents were 10-14% same as Chinese tea variety and increased gradually to September and showed no difference between the wild tea leaves and the cultivated. 2. Caffeine contents were 1.5-3% same as other Chinese variety and showed no difference between the wild tea leaves and the cultivated. 3. Aroma components showed nearly similar patterns between two different tea varieties and were identified as phenol, iso-butyl aldehyde, n-butyl aldehyde, iso-valer aldehyde, n-butyl alcohol, iso-amyl alcohol, iso-valeic acid, benzaldehyde, n-valeric acid and linalool among 32 peaks.

  • PDF

Relationship Linking Dietary Quercetin and Roughage to Concentrate Ratio in Feed Utilization, Ruminal Fermentation Traits and Immune Responses in Korean Indigenous Goats

  • Cho, Chi Hyun;Yang, Byung Mo;Park, No Seong;Lee, Hyung Suk;Song, Minho;Yi, Young Joo;Heo, Jung Min;Wickramasuriya, Samiru Sudharaka;Cho, Hyun Min;Lee, Soo Kee
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.1
    • /
    • pp.10-18
    • /
    • 2017
  • A total of nine Korean indigenous goats were used in a cross-over arrangement to give nine replicates per treatment, and they were housed individually assigned to 1 of 9 dietary treatments. Nine treatments were 0, 500, and 1000 ppm of quercetin supplementation in diets by mixing roughage and concentrate with different ratios (RC ratio) of 3:7 (RC 30), 5:5 (RC 50) and 7:3 (RC 70). Nutrient utilizations of dry matter, crude fat and NDF were not affected by neither RC ratio nor dietary quercetin (p>0.05), but the rate of crude protein and ADF increased in animals in RC 70 group regardless of quercetin supplementation (p<0.05). In addition, higher RC ratio increased (p<0.05) N retention and N retention rate. Total VFA, acetic acid, propionic acid, iso-butyric acid, butyric acid, iso-valeric acid and valeric acid contents were not affected (p>0.05) by dietary quercetin. Meanwhile, lower total cholesterol level exhibited in animals in RC 70 group compared to RC 30 or 50 groups, unrelated to dietary quercetin (p<0.05), however other plasma parameters were not influenced (p>0.05) by RC ratio and dietary quercetin. Our results indicated that both RC ratio and dietary quercetin may not directly affect the production indices and immune responses in Korean indigenous goat.

Investigation on the Cause of Malodor through the Reproduction of Chemicals (화학물질의 재현을 통한 악취발생원인 규명)

  • Park, Sang Jun;Oh, Young Hwan;Jo, Bo Yeon;Lee, Jae Shin;Kim, Eui Yong
    • KSBB Journal
    • /
    • v.29 no.5
    • /
    • pp.392-398
    • /
    • 2014
  • It was confirmed that malodor connected with an air-conditioner in an automobile is caused by microbial volatile organic compounds (MVOCs) produced by microorganisms and through microorganisms coexisting with each other to form a biofilm on the evaporator surface. A bacterium, Methylobacterium aquaticum, can form a biofilm on the evaporator surface. The biofilm was composed of 45.79% C (Carbon), 42.36% O (Oxygen), 1.85% Na (Sodium), 5.42% Al (Aluminum), 1.39% P (Phosphorus), 0.74% Cl (Chlorine) and 2.45% K (Potassium). This result matches the composition of the biofilm formed on the surface of the used evaporator. It was determined that sulfur compounds (Hydrogen sulfide, Dimethyl sulfide) and organic acids (n-Butyric acid, n-Valeric acid, iso-Valeric acid) in the air which was blown into the automobile were generated by Methylobacterium aquaticum and Aspergillus versicolor, respectively. On the other hand, volatile organic compounds (Toluene, Xylene, 2-Ethylhexanol, 2-Phenyl- 2-propanol, Ethylbenzene) were not found. It is estimated that the reason is due to the low concentration of generated MVOCs or is caused by the change of some MVOCs depending on the nutrients (medium).

Effect of Dietary Protein Levels on Composition of Odorous Compounds and Bacterial Ecology in Pig Manure

  • Cho, Sungback;Hwang, Okhwa;Park, Sungkwon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.9
    • /
    • pp.1362-1370
    • /
    • 2015
  • This study was performed to investigate the effect of different levels of dietary crude protein (CP) on composition of odorous compounds and bacterial communities in pig manure. A total of 48 male pigs (average initial body weight 45 kg) fed diets containing three levels of dietary CP (20%, 17.5%, and 15%) and their slurry samples were collected from the pits under the floor every week for one month. Changes in composition of odorous compounds and bacterial communities were analyzed by gas chromatography and 454 FLX titanium pyrosequencing systems, respectively. Levels of phenols, indoles, short chain fatty acid and branched chain fatty acid were lowest (p<0.05) in CP 15% group among three CP levels. Relative abundance of Bacteroidetes phylum and bacterial genera including Leuconostoc, Bacillus, Atopostipes, Peptonphilus, Ruminococcaceae_uc, Bacteroides, and Pseudomonas was lower (p<0.05) in CP 15% than in CP 20% group. There was a positive correlation (p<0.05) between odorous compounds and bacterial genera: phenol, indole, iso-butyric acid, and iso-valeric acid with Atopostipes, p-cresol and skatole with Bacteroides, acetic acid and butyric acid with AM982595_g of Porphyromonadaceae family, and propionic acid with Tissierella. Taken together, administration of 15% CP showed less production of odorous compounds than 20% CP group and this result might be associated with the changes in bacterial communities especially whose roles in protein metabolism.

Volatile Compounds and Sensory Properties of Commercial Brown Rice Vinegars Fermented with and without Ethanol (시판 현미식초의 주정첨가 유무에 따른 휘발성 성분 및 관능적 특성 비교)

  • Yoon, Sung-Ran;Kim, Gui-Ran;Lee, Ji-Hyun;Lee, Su-Won;Jeong, Yong-Jin;Yeo, Soo-Hwan;Choi, Han-Seok;Kwon, Joong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.5
    • /
    • pp.527-532
    • /
    • 2010
  • The properties of volatile flavor components were compared in commercial brown rice vinegars that were fermented with and without ethanol addition, for which solid phase microextraction-gas chromatography (SPME-GC), electronic nose, and sensory evaluations were performed. A total of 24 volatile compounds, mainly composed of acetic acid, ethyl acetate, benzaldehyde, iso-valeric acid, phenylethyl alcohol, 2-phenylethyl acetate, acetoin, and isobutyric acid, were identified in the brown rice vinegar fermented without ethanol, while major volatiles in the brown rice vinegar fermented with ethanol were acetic acid, ethyl acetate, 1-hexyl acetate, benzaldehyde, 2-phenylethyl acetate, and phenylethyl alcohol. The electronic nose patterns of samples indicated a significant difference in the brown rice vinegars fermented with and without ethanol. Pungent flavor and off-flavor intensity were high in the brown rice vinegar fermented without ethanol. According to the results, fermentation conditions affect the volatile properties of brown rice vinegars.