• Title/Summary/Keyword: Isothermal Characteristics

Search Result 257, Processing Time 0.029 seconds

Performance Predictions of the Planar-type Solid Oxide Fuel Cell with Computational Flow Analysis (II) - Non-isothermal Model - (유동 해석을 이용한 평판형 고체 산화물 연료전지의 성능 특성 분석 (II) - 비등온 모델 -)

  • Hyun, Hee-Chul;Sohn, Jeong L.;Lee, Joon-Sik;Ro, Sung-Tack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.963-972
    • /
    • 2003
  • Performance characteristics of the planar-type solid oxide fuel cell (SOFC) are investigated by the analysis of flow fields coupled with heat and mass transfer phenomena in anode and cathode channels. For these purposes, performance analysis of the SOFC is conducted based on electrochemical reaction phenomena in electrodes and electrolyte coupled with flow fields in anode and cathode channels. In the present study, the isothermal model adopted in the previous paper prepared by the same authors is extended to the non-isothermal model by solving energy equation additionally with momentum and mass transfer equations using CFD technique. It is found that the difference between isothermal and non-isothermal models come from non-uniform temperature distribution along anode and cathode electrodes by solving energy equation in non-isothermal model. Non-uniform temperature distribution in non-isothermal model contributes to the increase of average temperature of the fuel cell and influences its performance characteristics.

Characteristics Measurement of Pneumatic Elements Using Isothermal Chamber (등온화용기를 이용한 공기압 기기의 성능계측)

  • Jang, J.S.
    • Journal of Power System Engineering
    • /
    • v.4 no.1
    • /
    • pp.20-25
    • /
    • 2000
  • In this study, methods for the characteristics measurement of pneumatic elements using isothermal chamber, the methods for the flow rate and dynamic characteristic measurement of pneumatic control valve, are proposed. An isothermal chamber is a chamber in which the steel wool is stuffed and isothermal condition can almost be realized. Therefore, the instantaneous flow rate could be measured only from the pressure response using the state equation of gas. Effectiveness and simplicity of the proposed method are confirmed by comparing the measured results obtained by proposed methods with the methods defined JIS and the ISO standards.

  • PDF

High Temperature Cure Behavior of Unsaturated Polyester Resin (불포화 폴리에스터 수치의 고온경화특성 연구)

  • 김형근;오제훈;이대길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.38-41
    • /
    • 2000
  • High temperature cure characteristics of polyester resin systems were investigated by isothermal and dynamic differential scanning calorimetries. During isothermal scanning, the experimental procedure was modified to reduce the initial Boss of heat. no kinetic equation from the isothermal experiment was compared with that from the dynamic experiment.

  • PDF

The Characteristics of Isothermal Conduction Calorimetry and Specific Heat in Coal Gasification Slag (석탄 가스화 용융 슬래그의 비열 및 미소수화열 특성)

  • Han, Jun-Hui;Hu, Yun-Yao;Lim, Gun-Su;Kim, Su-Hoo;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.182-183
    • /
    • 2021
  • In this study, This is the result of thermal characteristics analysis to suggest an efficient method of using coal gasification slag(CGS) of byproduct from integrated gasification combined cycle(IGCC). In Specific Heat characteristics, CGS and CS showed similar values. Isothermal Conduction Calorimetry showed that the hydration reaction of cement was retarded when CGS was used. Therefore, it is expected that CGS will be used as an efficient alternative to reducing the hydration heat of mass concrete as a functional aggregate combination.

  • PDF

Deformation Characteristics of Udimet 720Li during Isothermal Forging (Udimet 720Li 합금의 항온단조 변형특성)

  • Yeom J. T.;Na Y. S.;Park N. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.190-193
    • /
    • 2001
  • Hot deformation behavior of Udimet 720Li was characterized by compression tests in the temperature range of $1025^{\circ}C\;to\;1150^{\circ}C$ and the strain rate rage of $0.0005s^{-1}\;to\;5s^{-1}$. In order to characterize the dependence of flow stress on strain, strain rate and temperature, a constitutive equation based on hyperbolic sine formation was used. Isothermal forging of Udimet 720Li was performed in the temperature range $1050-1150^{\circ}C$ at strain rates of $0.05s^{-1}\;and\;0.005s^{-1}$. FE simulation was also carried out to predict deformation microstructures during isothermal forging.

  • PDF

Effects of aspect ratio on natural convective heat transfer from a vertical isothermal cylinder immersed in cold pure water (저온의 순수물속에 잠겨있는 등온수직 원기둥에 의한 자연대류 열전달에 종횡비가 미치는 영향)

  • 유갑종;엄용균;이성진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.677-684
    • /
    • 1991
  • A numerical analysis is performed about the effects of aspect ratio on natural convective heat transfer from a vertical isothermal cylinder of 0.deg. C immersed in cold pure water. The results of analysis include velocity profiles, temperature profiles and mean Nusselt number of the steady flow region. As aspect ratio of vertical cylinder increases, the flow and heat transfer characteristics of vertical isothermal cylinder approach to those of vertical isothermal flat plate. Numerical solutions obtained for Rayleigh number and aspect ratio indicate the cylinders can be classified as short cylinder and long cylinder. In the cases of short cylinder and long cylinder, new heat transfer correlations are presented. Here, the coefficient values C of new heat transfer correlations are presented as the function of density extremum parameter $R^*/. Numerical results show that theoretical results are in close agreement with experimental results.ts.

Morphological Variation of Bainitic Ferrite in Transformation Process of Austempered Ductile Iron (구상흑연주철의 Bainite변태과정에서 Bainitic Ferrite의 형상변화)

  • Choi, Dap-Chun
    • Journal of Korea Foundry Society
    • /
    • v.12 no.5
    • /
    • pp.403-411
    • /
    • 1992
  • The growth characteristics of bainite at early stage in the fast quenched spheroidal graphite cast irons containing 0.06%Mn and 0.45%Mn during austempering process, was investigated with optical and scanning electron microscope. The following results regarding the effects of Mn and isothermal heat treatment on the morphological variation of bainitic ferrite were obtained. The morphology of bainite varies from acicular below 350$^{\circ}C$ to feather shape above 350$^{\circ}C$. The period of isothermal treatment also affects the shape of bainite at the fixed temperature. At 350$^{\circ}C$, bainite is bamboo leaf-like up to 200 secs of isothermal holding time and with further increasing time up to 300 secs, changes to a mixed structure consisting of both feather and bamboo leaf and, finally becomes all feather shape at 900 secs. The morphology of bainitic ferrite formed at early stage of 300$^{\circ}C$ isothermal treatment is similar to that of bainitic ferrite formed at 250$^{\circ}C$ or 350$^{\circ}C$ with unbranched, linear ferrite. However, bainitic ferrite divides into branches with increasing isothermal treatment, which occurs more fast at 400$^{\circ}C$ than at 350$^{\circ}C$. The difference in adding amount of Mn influences the morphology of bainitic ferrite in upper bainite. The bainitic ferrite with 0.45%Mn is observed to be more stable than that with 0.06%Mn, remaining unbranched for a longer period at the same temperature.

  • PDF

Thermal-Mechanical and Low Cycle Fatigue Characteristics of 12Cr Heat Resisting Steel with Hold Time Effects (유지시간 효과를 고려한 12Cr 내열강의 열피로 및 저주기 피로 특성)

  • Ha, J.S.;Koh, S.K.;Ong, J.W.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.1-12
    • /
    • 1995
  • Isothermal and thermal-mechanical fatigue characteristics of 12Cr heat resisting steel used for high temperature applications were investigated including hold time effects. Isothermal low cycle fatigue test at $600^{\circ}C$ and in-phase, out-of-phase thermal-mechanical fatigue test at 350 to $600^{\circ}C$ were conducted using smooth cylindrical hollow specimen under strain-control with total strain ranges from 0.006 to 0.015. Regardless of thermal-mechanical and isothermal fatigue tests, cyclic softening behavior was observed and much more pronounced in the thermal-mechanical fatigue tests with hold times due to the stress relaxation during the hold time. The phase difference between temperature and strain in thermal-mechanical fatigue tests resulted in significantly shorter fatigue life for out-of-phase compared to in-phase. The differences in fatigue lives were dependent upon the magnitudes of plastic strain ranges and mean stresses. During the hold time in the strain-controlled fatigue tests, the increase in the plastic strain range and the stress relaxation were observed. It appeared that the increase in plastic strain range per cycle and the introduction of creep damage made important contributions to the reduction of thermal-mechanical fatigue life with hold time, and the life reduction tendency was more remarkable in the in-phase than in the out-of-phase thermal-mechanical fatigue. Isothermal fatigue tests performed under the combination of fast and slow strain rates at $600^{\circ}C$ showed that the fatigue life decreased as the strain rate and frequency decreased,especially for the low strain ranges.

  • PDF

Change in Ultrasonic Characteristics with Isothermal Heat Treatment of 2.25Cr-1Mo Steel (등온열처리에 따른 2.25Cr-1Mo강의 초음파 특성 변화)

  • Nam, Young-Hyun;Baek, Un-Bong;Park, Jong-Seo;Nahm, Seung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.353-358
    • /
    • 2013
  • The ultrasonic characteristics of 2.25Cr-1Mo steel were investigated in relation to the isothermal heat treatment temperature and time. Charpy impact tests and hardness tests were conducted on individual specimens with three different heat treatment conditions. A pulse-echo method with longitudinal waves was used to measure the attenuation and velocity of ultrasonic waves. The FATT (fracture appearance transition temperature) increased with an increase in the isothermal heat treatment time, which implies that the toughness decreased. As the isothermal heat treatment time and temperature increased, the longitudinal wave velocity and ultrasonic attenuation coefficient were raised.

Thermo-Mechanical Fatigue Crack Propagation Behaviors of 1.5Cr-0.67Mo-0.33V Alloy (1.5Cr-0.67Mo-0.33V강의 열피로 크랙전파 거동)

  • 송삼홍;강명수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2133-2141
    • /
    • 1995
  • The thermo-mechanical fatigue tests were performed on the specimens extracted from 1.5Cr-0. 67Mo-0.33V alloy. The characteristics of thermo-mechanical fatigue crack propagation were examined and reviewed in view of fracture mechanics. The results obtained from the present study are summarized as follows : (1) The propagation characteristics of isothermal low-cycle fatigue crack are dominated by .DELTA.J$_{f}$ in case of PP waveform, and .DELTA.J$_{c}$ in case of CP waveform. (II)The propagation characteristics of thermo-mechanical fatigue crack are dominated by .DELTA.J$_{c}$ for in-phase case, and by .DELTA.J$_{c}$ for out-of-phase. The present results were in good agreement with the equation of propagation law for isothermal low-cycle fatigue crack in case of thermo-mechanical fatigue.tigue.e.