• Title/Summary/Keyword: Isothermal solidification

Search Result 30, Processing Time 0.028 seconds

Influences of boron and silicon in insert alloys on microstructure and isothermal solidification during TLP bonding of a duplex stainless steel using MBF-35 and MBF-30

  • Yuan, Xinjian;Kim, Myung-Bok;Kang, Chung-Yun
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.59-59
    • /
    • 2009
  • The influences of B and Si in the filler metals on microstructure and isothermal solidification during transient liquid-phase (TLP) bonding of a nitrogen-containing duplex stainless steel with MBF-30 (Ni-4.5wt.%Si-3.2wt.%B) and MBF-35 (Ni-7.3wt.%Si-2.2wt.%B), were studied at the temperature range of $1030-1090^{\circ}C$ with various times from 60 s to 3600 s under a vacuum of approximately $10^{-5}$ Torr. In case of the former, BN, $Ni_3B$ and $Ni_3Si$ precipitates were formed in the bonding region. BN and $Ni_3Si$ secondary phases were present in the joint for the latter case. The formation of $Ni_3B$ within the joint centerline is dependent on B content. The morphology of $Ni_3Si$ is dominated by Si concentration. A difference between the times for complete isothermal solidification obtained by the experiments and the conventional TLP bonding diffusion model was observed when using MBF-35. According to the simulated results, the isothermal solidification completion time for MBF-35 case was smaller than that in MBF-30. However, this experimental value obtained using MBF-35 was notably larger than that obtained using MBF-30. Isothermal solidification of liquid MBF-30 is controlled by the first isothermal solidification regime dependent on B diffusion model, whereas that of liquid MBF-35 experiences two isothermal solidification regimes and is mainly controlled by the second isothermal solidification dependent on Si diffusion model. In addition, only if Si content exceeds a critical value, the slower 2nd solidification regime will commence.

  • PDF

The Effect of Base Metal Grain Boundary on Isothermal Solidification Phenomena during TLP Bonding of Ni Base Superalloys (액상확산접합한 Ni기 초내열합금의 등온응고거동에 미치는 모재결정입계의 영향)

  • 김대업
    • Journal of Welding and Joining
    • /
    • v.19 no.3
    • /
    • pp.325-333
    • /
    • 2001
  • The effect of base metal grain size on isothermal solidification behavior of Ni-base superalloy, CMSX-2 during transient liquid phase (TLP) bonding was investigated employing MBF-80 insert metal. TLP-bonding of single crystal. coarse-grained and fine-grained CMSX-2 was carried out at 1373∼1548k for various holding time in vacuum. The eutectic width diminished linearly with the square root of holding time during isothermal solidification process for single crystal, coarse-grained and fine-grained base metals. The completion time for isothermal solidification decreased in the order ; single crystal, coarse-grained and fine-grained base metals. The difference of isothermal solidification rates produced when bonding the different base metals could be explained quantitatively by the effect of base metal grain boundaries on the apparent average diffusion coefficient of boron in CMSX-2.

  • PDF

The Mixing Ratio Effect of Insert Metal Powder and Insert Brazing Powder on Microstructure of the Region Brazed on DS Ni Base Super Alloy (일방향응고 Ni기 초내열합금 천이액상화산접합부의 미세조직에 미치는 모재와 삽입금속 분말 혼합비의 영향)

  • Ye Chang-Ho;Lee Bong-Keun;Song Woo-Young;Oh In-Seok;Kang Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.23 no.6
    • /
    • pp.99-105
    • /
    • 2005
  • The mixing ratio effect of the GTD-111(base metal) powder and the GNI-3 (Ni-l4Cr-9.5Co-3.5Al-2.5B) powder on TLP(Transient Liquid Phase) bonding phenomena and mechanism was investigated. At the mixing ratio of the base metal powder under $50wt\%$, the base metal powders fully melted at the initial time and a large amount of the base metal near the bonded interlayer was dissolved by liquid inter metal. Liquid insert metal was eliminated by isothermal solidification which was controlled by the diffusion of B into the base metal. The solid phases in the bonded interlayer grew epitaxially from the base metal near the bonded interlayer inward the insert metal during the isothermal solidification. The number of grain boundaries farmed at the bonded interlayer corresponded with those of base metal. At the mixing ratio above $60wt\%$, the base metal powder melted only at the surface of the powder and the amount of the base metal dissolution was also less at the initial time. Nuclear of solids firmed not only from the base metal near the bonded interlayer but also from the remained base metal powder in the bonded interlayer. Finally, the polycrystal in the bonded interlayer was formed when the isothermal solidification finished. When the isothermal solidification was finished, the contents of the elements in the boned interlayer were approximately equal to those of the base metal. Cr-W borides and Cr-W-Ta-Ti borides formed in the base metal near the bonded interlayer. And these borides decreased with the increasing of holding time.

A Study on the Width of Liquid Layer of Ni/B/Ni Diffusion Bonding System (Ni/B/Ni 액상확산접합계의 액상폭에 관한 연구)

  • ;;Kang, C. S.
    • Journal of Welding and Joining
    • /
    • v.13 no.4
    • /
    • pp.147-154
    • /
    • 1995
  • In order to study the bonding mechanism of Ni/B/Ni transient liquid phase bonding system, width of liquid layers were calculated, where in this system melting point of insert material(B) is higher than bonding temperature and melting point of base metal(Ni). Caclulated values were compared with experimental ones which were measured by bonding Ni/B/Ni system at 1433-1474K under vacuum atmosphere. As results, the width of initial liquid layer of Ni/B/Ni system was calculated as $W_{IL}$ = $W_{o}$[1 + {2.100..rho.$_{S/}$ ( $X_{3}$ + $X_{4}$)..rho.$_{Ni}$ }-.rho.$_{S/}$.rho. Ni/], and it was nearly same with experimental values. Maximum width of liquid layer, width of liquid layer during isothermal solidification and isothermal solidification time were calculated also.o.o.o.

  • PDF

Bonding Phenomena during Transient Liquid Phase Bonding of CMSX-4, High Performance Single Crystal Superalloy (고성능 단결정 초내열합금 CMSX-4의 액상확산접합현상)

  • 김대업
    • Journal of Welding and Joining
    • /
    • v.19 no.4
    • /
    • pp.423-428
    • /
    • 2001
  • The bonding phenomena of Ni base single crystal superalloy. CMSX-4 during transient liquid phase(TLP) bonding was investigated using MBF-80 insert metal. Bonding of CMSX-4 was carried out at 1,373∼1,548K for 0∼19.6ks in vacuum. The (001) orientation of each test specimen was aligned perpendicular to the bonding interface. The dissolution width of base metal was increased when the bonding temperature and holding time were increased. The eutectic width diminished linearly with the square root of holding time during isothermal solidification process. Borides were formed in the bonded layer during TLP bonding operation. The solid phase grew epitaxially into the liquid phase from substrates and single crystallization could be readily achieved during the isothermal solidification.

  • PDF

Effect of Bonding Temperature and Heating Rate on Transient Liquid Phase Diffusion Bonding of Ni-Base Superalloy (니켈기 초내열 합금의 천이액상확산접합 특성에 미치는 접합 온도 및 가열 속도의 영향)

  • Choi Woo-Hyuk;Kim Sung-Wook;Kim Jong-Hyun;Kim Gil-Young;Lee Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.23 no.2
    • /
    • pp.52-58
    • /
    • 2005
  • This study was carried out to investigate the effect of bonding temperature and heating rate on transient liquid phase diffusion bonding of Ni-base superalloy. The heating rate was varied by $0.1^{\circ}C$/sec, $1^{\circ}C$/sec, $10^{\circ}C$/sec to the bonding temperatures $1100^{\circ}C,\;1150^{\circ}C,\;1200^{\circ}C$ under vacuum. As bonding temperature increased, maximum dissolution width of base metal increased, but a dissolution finishing time decreased. The eutectic width of insert metal in the bonded interlayer decreased linearly in proportion to the square root of holding time during isothermal solidification stage. The bonding temperature was raised, isothermal solidification rate slightly increased. As the heating rate decreased and the bonding temperature increased, the completion time of dissolution after reaching bonding temperature decreased. When the heating rate was very slow, the solidification proceeded before reaching bonding temperature and the time required for the completion of isothermal solidification became reduced.

A study on transient liquid phase diffusion bonding of 304 stainless steel and structural carbon steels (304 스테인레스강과 구조용탄소강과의 천이액상확산접합에 관한 연구)

  • 김우열;정병호;박노식;강정윤;박세윤
    • Journal of Welding and Joining
    • /
    • v.9 no.4
    • /
    • pp.28-39
    • /
    • 1991
  • The change of microstructure in the bonded interlayer and mechanical properties of the joints were investigated during Transient Liquid Phase Diffusion Bonding(TLP bonding) of STS304/SM17C and STS304/SM45C couples using Ni base amorphous alloys added boron and prepared alloy as insert metal. Main experimental results obtained in this study are as follows: 1) Isothermal solidification process was completed much faster than theoretically expected time, 14ks at 1473K temperature. Its completion times were 3.6ks at 1423K, 2.5ks at 1473K and 1.6ks at 1523K respectively. 2) As the concentration of boron in the insert metal increased, the more borides were precipitated near bonded interlayer and grain boundary of STS304 side during isothermal solidification process, its products were $M_{23}P(C,B)_6}_3)$ The formation of grain boundary during isothermal solidification process was completed at structural carbon steel after starting the solidfication at STS304 stainless steel. 4) The highest value of hardness was obtained at bonded interface of STS304 side. The desirable tensile properties were obtained from STS304/SM17C, STS304/SM45C using MBF50 and experimentally prepared insert metal with low boron concentration.

  • PDF

The Bonding Strength Characteristic of the Filler Metal Powder on the TLP Bonded Region of Superalloy GTD-111DS (일방향 초내열합금 GTD-111DS에서 삽입금속 분말에 따른 천이액상확산접합부의 접합강도 특성)

  • Oh, In-Seok;Kim, Gil-Moo;Moon, Byeong-Shik
    • Journal of Welding and Joining
    • /
    • v.25 no.5
    • /
    • pp.45-50
    • /
    • 2007
  • The Ni-base superalloy GTD111 DS is used in the first stage blade of high power land-based gas turbines. Advanced repair technologies of the blade have been introduced to the gas turbine industry over recent years. The effect of the filler metal powder on Transient Liquid Phase bonding phenomenon and tensile mechanical properties was investigated on the GTD111 DS superalloy. At the filler metal powder N series, the base metal powders fully melted at the initial time and a large amount of the base metal near the bonded interlayer was dissolved by liquid inter metal. Liquid filler metal powder was eliminated by isothermal solidification which was controlled by the diffusion of B into the base metal. The solids in the bonded interlayer grew from the base metal near the bonded interlayer inward the insert metal during the isothermal solidification. The bond strength of N series filler metal powder was over 1000 MPa. and ${\gamma}'$ phase size of N series TLP bonded region was similar with base metal by influence of Ti, Al elements. At the insert metal powder M series, the Si element fluidity of the filler metal was good but microstructure irregularity on bonded region because of excessive Si element. Nuclear of solids formed not only from the base metal near the bonded interlayer but also from the remained filler metal powder in the bonded interlayer. When the isothermal solidification was finished, the content of the elements in the boned interlayer was approximately equal to that of the base metal. But boride and silicide formed in the base metal near the bonded interlayer. And these boride decreased with the increasing of holding time. The bond strength of M series filler metal powder was about 400 MPa.

Transient Liquid Phase Bonding of Directionally Solidified Ni Base Superalloy, GTD-111(I) - Bonding Phenomena and Mechanism - (일방향응고 Ni기초내열합금 GTD-111의 천이액상확산접합(I))

  • 강정윤;권민석;김인배;김대업;우인수
    • Journal of Welding and Joining
    • /
    • v.21 no.2
    • /
    • pp.82-88
    • /
    • 2003
  • The bonding phenomenon and mechanism in the transient liquid phase bonding(TLP Bonding) of directionally solidified Ni base superalloy, GTD-111 was investigated. At the bonding temperature of 1403K, liquid insert metal was eliminated by isothermal solidification which was controlled by the diffusion of B and Si into the base metal and solids in the bonded interlayer grew epitaxially from mating base metal inward the insert metal. The number of grain boundaries formed at the bonded interlayer was corresponded with those of base metal. The liquation of grain boundary and dendrite boundary occurred at 1433K. At the bonding temperature of 1453K which is higher than liquation temperature of grain boundary, liquids of the Insert metal were connected with liquated grain boundaries and compositions in each region mixed mutually. In Joints held for various time at 1453t phases formed at liquated grain boundary far from the interface were similar to those of bonded interlayer. With prolonged holding time, liquid phases decreased gradually and liquids of continuous band shape divided many island shape. But liquid phases did not disappeared after holding for 7.2ks at 1453k. Isothermal solidification process at the bonding temperature which is higher than the liquation temperature of the grain boundary was controlled by diffusion of Ti to be result in liquation than B or Si. in insert metal. (Received January 15, 2003)

Joinability of Tool Steels by TLP Bonding (천이액상확산접합에 의한 합금공구강의 접합특성)

  • 권병대;이원배;김봉수;홍태환;서창제;정승부
    • Journal of Welding and Joining
    • /
    • v.21 no.4
    • /
    • pp.69-74
    • /
    • 2003
  • The mechanical properties of STD11 Joints by using TLP (Transient Liquid Phase Diffusion) bonding method employing MBF-30 and MBF-80 insert metals were investigated with concerning to the microstructural change. TLP bonding of STD 11 was carried out at 1323∼1423K for 0.6ks∼3.6ks in vacuum. The microstructure and the element distribution of the interlayer between tool steels and insert metals showed specific feature with bonding conditions. It was found that the width of the interlayer increased at initial bonding stage. However, the width of interlayer showed nearly constant value during the isothermal solidification. After isothermal solidification was completed, the joint showed homogeneous element distribution and similar microstructure with base metal because of the grain boundary migration to the bonded interlayer. The bonding strength measured by a tensile test has been varied with the bonding conditions. The maximum joint strength, 760MPa, was obtained with the condition of 1423K for 1.2ks using MBF30 insert metal in this experiment.