• 제목/요약/키워드: J774 macrophage

검색결과 26건 처리시간 0.023초

Cadmium increases ferroportin-1 gene expression in J774 macrophage cells via the production of reactive oxygen species

  • Park, Bo-Yeon;Chung, Ja-Yong
    • Nutrition Research and Practice
    • /
    • 제3권3호
    • /
    • pp.192-199
    • /
    • 2009
  • Cadmium intoxication has been associated with the dysregulation of iron homeostasis. In the present study, we investigated the effect of cadmium on the expression of ferroportin 1 (FPN1), an important iron transporter protein that is involved in iron release from macrophages. When we incubated cadmium with J774 mouse macrophage cells, FPN1 mRNA levels were significantly increased in a dose- and time-dependent manner. Furthermore, the cadmium-induced FPN1 mRNA expression was associated with increased levels of FPN1 protein. On the other hand, cadmium-mediated FPN1 mRNA induction in J774 cells was completely blocked when cells were co-treated with a transcription inhibitor, acitomycin D. Also, cadmium directly stimulated the activity of the FPN1-promoter driven luciferase reporter, suggesting that the cadmium up-regulates FPN1 gene expression in a transcription-dependent manner. Finally, cadmium exposure to J774 macrophages increased intracellular reactive oxygen species (ROS) levels by ${\sim}2$-fold, compared to untreated controls. When J774 cells were co-treated with antioxidant N-acetylcystein, the cadmium-induced FPN1 mRNA induction was significantly attenuated. In summary, the results of this study clearly demonstrated that cadmium increased FPN1 expression in macrophages through a mechanism that involves ROS production, and suggests another important interaction between iron and cadmium metabolism.

황색포도구균에 의한 J774A.1 마우스 대식세포주의 Apoptosis 유도 및 관련인자 (Apoptosis Induction and Associated Factor of Staphylococcus aureus in J774A.1 Mouse Macrophage Cell Line)

  • 김상호;이창민;정수진;정민호;김진구;차재관;이형식;임영진;이상화
    • 대한미생물학회지
    • /
    • 제35권1호
    • /
    • pp.87-95
    • /
    • 2000
  • Staphylococcus aureus infections are often life-threatening. Relatively little is known about the host response to these infections, in particular, the implication of apoptosis induced by this microorganism. In this study, we have shown that S. aureus was cytotoxic to J774A.1 cell, a murine macrophage cell line. The cell death mediated by S. aureus occurred through apoptosis, as shown by increase in the proportion of fragmented host cell DNA. Although phagocytosis and NO production had important role in the induction of apoptosis, the contact between bacteria and host cells was not essential for this pathway. A certain bacterial product could also induce typical caspase-dependent apoptosis of J774A.1 cell. It is expected that new interpretation may be possible to host-parasite relationship based on these results.

  • PDF

대식세포의 Fc 수용체를 통한 탐식에 미치는 Inositol-phosphatase의 영향 (Effect of Inositol-phosphatase on Fc Receptor-mediated Phagocytosis of Macrophages)

  • 김종현
    • IMMUNE NETWORK
    • /
    • 제5권3호
    • /
    • pp.144-149
    • /
    • 2005
  • Background: Fc receptor-mediated phagocytosis is a complex process involving the activation of kinases and phosphatases. FcgammaRIIB has been known to transduces inhibitory signals through an immunoreceptor tyrosine-based inhibitory motif (ITIM) in cytoplasmic domains. In this study, we examined the involvement of inositol-phosphatase in the Fc receptor-mediated phagocytosis. Methods: J774 cells were infected using vaccinia viral vector containing SH2 domain-containing inositol-phosphatase (SHIP) cDNA and stimulated with the sensitized sheep red blood cells. Results: Stimulation of J774 cells induced the tyrosine phosphorylation of SHIP which was maximal at 5 minutes. Phosphatidylinositol-3 (PI-3) kinase inhibitor (wortmannin) inhibits J774 cell phagocytosis of sensitized sheep red blood cells in a dose-dependent manner. Heterologious expression of SHIP in J774 cells inhibits phagocytosis of sensitized sheep red blood cells in a dose-dependency manner, but catalytically dead mutants of SHIP has no effect on phagocytosis. Conclusion: These results strongly suggest that the active signals mediated by PI-3 kinase are opposed by inhibitory signals through SHIP in the regulation of Fc receptor-mediated phagocytosis.

우리밀의 면역증강능 규명 (Screening of Immune-Enhancing Substance(s) from Korean Wheats)

  • 최면;박재봉;김현숙
    • 한국식품영양과학회지
    • /
    • 제29권2호
    • /
    • pp.307-311
    • /
    • 2000
  • The purpose of this study was to identify excellent immune-enhancing substance from Korean wheats(Eunpa, Gueru, Alchan, Topdong, Suwon 267, Gobun) compared with imported ones(Australian standard white, ASW; Dark northern spring, DNS). Phagocytic activities of PBS (phosphate buffered saline, pH 7.4) and EA(ethanol-acetic acid) extracts from the wheats were determined using mouse macrophage J774 cell line. In order to set the optimal experimental condition up, the cultured cells were tested in varying experimental conditions. About two to five times higher phagocytic activity was shown in EA extract of Korean wheats compared to that of imported wheats. PBS extracts of wheats did not show increased phagocytic activity compared to control that did not add any extract. The EA extract of Gobun wheat showed the highest phagocytic activity. From the experiment we found that the optimal experimental condition was shown in two hours of reaction time and 0.05mg amout of EA extract added to J774 cells.

  • PDF

분자량에 따른 Chitosan의 in vitro 대식세포 활성화 (Macrophage Activation of Chitosan Hydrolysates with Different Molecular Weights in vitro)

  • 장현주;전향숙;이서래
    • 한국식품과학회지
    • /
    • 제31권5호
    • /
    • pp.1363-1370
    • /
    • 1999
  • 게껍질 기원의 chitosan을 산가수분해 및 한외여과법으로 제조한 후, 그들의 분자량에 따른 대식세포 활성증진능을 측정하였다. Continuous macrophage cell line J774A.1을 이용한 nitrite 분비능을 비교한 결과, intactchitosan의 농도가 $10\;{\mu}g/ml$일 때 최고의 분비능을 나타냈다. 대식세포의 hydrogen peroxide 분비능은 chitosan 가수분해물 분획 5의 $1,000\;{\mu}g/ml$ 농도에서 $894\;{\mu}M/mg$ macrophage protein을 나타냈으며 chitosan 가수분해물 분획 6의 $100\;{\mu}g/ml$농도에서는 $1,044\;{\mu}M/mg$ macrophage protein의 최고 분비능을 나타냈다. 또 한 $IL-1{\alpha}$ 분비능은 분획 4, 분회 6 및 intact chitosan 에서만 나타났고, tumor necrosis factor의 경우도 chitosan 가수분해물 분획 4, 분회 5, 분회 6 및 Intract chitosan에서 분비능이 컸다. 결론적으로 chitosan 가수분해물 중에서 HPLC법으로 측정한 분사량이 $24,000{\sim}64,000$인 chitosan 가수분해물 분획 4, 분획 5 및 분획 6이 반응성 질소종 분비능을 제외한 대식세포 활성 증 진능이 가장 큰 것으로 나타났다.

  • PDF

A novel mechanism of Korean Red Ginseng-mediated anti-inflammatory action via targeting caspase-11 non-canonical inflammasome in macrophages

  • Min, Ji-Hyun;Cho, Hui-Jin;Yi, Young-Su
    • Journal of Ginseng Research
    • /
    • 제46권5호
    • /
    • pp.675-682
    • /
    • 2022
  • Background: Korean Red Ginseng (KRG) was reported to play an anti-inflammatory role, however, previous studies largely focused on the effects of KRG on priming step, the inflammation-preparing step, and the anti-inflammatory effect of KRG on triggering, the inflammation-activating step has been poorly understood. This study demonstrated anti-inflammatory role of KRG in caspase-11 non-canonical inflammasome activation in macrophages during triggering of inflammatory responses. Methods: Caspase-11 non-canonical inflammasome-activated J774A.1 macrophages were established by priming with Pam3CSK4 and triggering with lipopolysaccharide (LPS). Cell viability and pyroptosis were examined by MTT and lactate dehydrogenase (LDH) assays. Nitric oxide (NO)-inhibitory effect of KRG was assessed using a NO production assay. Expression and proteolytic cleavage of proteins were examined by Western blotting analysis. In vivo anti-inflammatory action of KRG was evaluated with the LPS-injected sepsis model in mice. Results: KRG reduced LPS-stimulated NO production in J774A.1 cells and suppressed pyroptosis and IL-1β secretion in caspase-11 non-canonical inflammasome-activated J774A.1 cells. Mechanistic studies demonstrated that KRG suppressed the direct interaction between LPS and caspase-11 and inhibited proteolytic processing of both caspase-11 and gasdermin D in caspase-11 non-canonical inflammasome-activated J774A.1 cells. Furthermore, KRG significantly ameliorated LPS-mediated lethal septic shock in mice. Conclusion: The results demonstrate a novel mechanism of KRG-mediated anti-inflammatory action that operates through targeting the caspase-11 non-canonical inflammasome at triggering step of macrophage-mediated inflammatory response.

Effect of Nitric Oxide on ADP-ribose Pyrophosphatase Activity

  • Kim, Jong-Hyun
    • IMMUNE NETWORK
    • /
    • 제5권4호
    • /
    • pp.199-204
    • /
    • 2005
  • Background: ADP-ribosyl pyrophosphatases (ADPRase) has been known to catalyze the hydrolysis of ADP-ribose to ribose-5-phosphate and AMP. The role of ADPRase has been suggested to sanitize the cell by removing potentially toxic ADP-ribose. In this study, we examined the effect of nitric oxide on ADPRase activity in macrophages. Methods: ADPRase activity was measured in NO-inducing J774 cells. For in vitro experiments, recombinant human ADPRase was prepared in bacteria. Results: ADPRase activity was increased by the treatment of exogenous NO generating reagent, sodium nitroprusside (SNP), in J774 cells. The increased ADPRase activity was mediated by the post-translational modification, likely to cause cADP-ribosylation via nitrosylation of cysteine residue on the enzyme. The stimulation with endogeneous NO inducers, $TNF-{\alpha}/IFN-{\gamma}$, also increased ADPRase activity through NO synthesis. Futhermore, ADPRase activity may be mediated by the post-translational modification of ADPRase, ADP-ribosylation. Conclusion: These results indicate that NO synthesized by macrophage activation plays a critical role in the increase in ADPRase activity following ADP-ribose metabolism.

Effects of various metal ions on the gene expression of iron exporter ferroportin-l in J774 macrophages

  • Park, Bo-Yeon;Chung, Ja-Yong
    • Nutrition Research and Practice
    • /
    • 제2권4호
    • /
    • pp.317-321
    • /
    • 2008
  • Macrophages play a key role in iron metabolism by recycling iron through erythrophagocytosis. Ferroportin-l (FPN1) is a transporter protein that is known to mediate iron export from macrophages. Since divalent metals often interact with iron metabolism, we examined if divalent metals could regulate the expression of FPN1 in macrophages. J774 macrophage cells were treated with copper, manganese, zinc, or cobalt at 10, 50, or $100\;{\mu}M$ for 16 to 24 h. Then, FPN1 mRNA and protein levels were determined by quantitative real-time PCR and Western blot analyses, respectively. In addition, effects of divalent metals on FPN1 promoter activity were examined by luciferase reporter assays. Results showed that copper significantly increased FPN1 mRNA levels in a dose-dependent manner. The copper-induced expression of FPN1 mRNA was associated with a corresponding increase in FPN1 protein levels. Also, copper directly stimulated the activity of FPN1 promoter-driven reporter construct. In contrast, manganese and zinc had no effect on the FPN1 gene expression in J774 cells. Interestingly, cobalt treatment in J774 cells decreased FPN1 protein levels without affecting FPN1 mRNA levels. In conclusion, our study results demonstrate that divalent metals differentially regulate FPN1 expression in macrophages and indicate a potential interaction of divalent metals with the FPN1-mediated iron export in macrophages.

Caco-2 소장세포와 J774 대식세포에서 Hepcidin 호르몬이 철분 수송체 Ferroportin과 Divalent Metal Transporter 1의 유전자 발현에 미치는 영향 (Effects of Hepcidin Hormone on the Gene Expression of Ferroportin and Divalent Metal Transporter 1 in Caco-2 Cells and J774 Cells)

  • 채선주;정자용
    • 한국식품영양과학회지
    • /
    • 제37권6호
    • /
    • pp.721-728
    • /
    • 2008
  • 본 연구에서는 소장세포(Caco-2)와 대식세포(J774)를 이용하여 FPN과 DMT1의 유전자 발현에 hepcidin 펩타이드 호르몬이 미치는 영향을 알아보기 위하여 수행되었으며 그 결과를 요약하면 다음과 같다. Caco-2 세포에서 FPN과 DMT1의 mRNA 및 단백질 수준은 분화 진행에 따라 비례하여 증가하였으며, 특히 DMT1 단백질은 분화 초기에는 거의 발현되지 않다가 분화 7일째에 비로소 발현되기 시작한 후 급격히 증가하여 분화 17일째에는 7일째에 비해 단백질 수준이 10배 이상 크게 증가되었다. 분화된 Caco-2 세포에서 소변 hepcidin과 합성 hepcidin을 100 nM 농도로 24시간 동안 처리하였을 때, FPN 단백질 수준이 대조군에 비해 각각 60%와 70% 수준으로 유의하게 감소하였다. DMT1 단백질의 경우, 소변 hepcidin 100 nM 농도에서만 대조군의 55% 수준으로 유의하게 감소되었다. J774 세포에 소변 hepcidin 혹은 합성 hepcidin을 24시간 처리한 결과, 10 nM과 100 nM 농도에서 모두 대조군에 비해 FPN 단백질 수준이 유의적으로 감소하는 것으로 나타났으며, DMT1 단백질 수준도 소변 hepcidin 10 nM과 100 nM 처리에 의해 각각 대조군의 40%와 37% 수준으로 유의하게 감소하였다. 분화된 Caco-2 세포와 J774 세포에서 10 nM 혹은 100 nM 농도의 hepcidin 처리 시 DMT1 mRNA와 FPN mRNA 수준에는 영향을 미치지 않는 것으로 나타났으며, 이로 볼 때 hepcidin은 전사과정의 조절보다는 DMT1과 FPN 단백질로의 번역과정을 억제하거나 분해 속도를 촉진함으로써 이들 단백질의 수준을 낮추는 것으로 보인다. 이상의 결과는, hepcidin 펩타이드 호르몬이 DMT1 단백질과 FPN 단백질의 수준을 억제함으로써 체내 철분 대사 조절에 중요하게 관여함을 나타낸다. 특히 소장세포와 대식세포에 동시에 작용함으로써, 소장에서의 철분 흡수와 대식세포에서의 철분 방출을 효율적으로 억제하는 조절 인자로 작용할 수 있음을 제시한다. 앞으로 hepcidin의 생성 및 분비를 조절하는 요인에 대한 연구와 hepcidin이 실제 세포 내외로의 철분의 수송이 미치는 영향에 대한 기능적 연구가 계속적으로 이루어져야 할 것으로 사료된다.

Macrophage 유도 사람 Low Density Lipoprotein[LDL]의 수식에 대한 Streptomyces sp. BH-405 배양액의 항산화 활성 (Antioxidative Activity of Streptomyces sp. BH-405 on Macrophage Mediated Modification of Human Low Density Lipoprotein[LDL))

  • 류병호;박종옥;김희숙;김민정
    • KSBB Journal
    • /
    • 제15권2호
    • /
    • pp.156-161
    • /
    • 2000
  • 해양에서 분리한 Streptomyces sp. BH-405의 배양액으로부터 정제하여 얻은 항산화 활성이 우수한 획분 band 2 에 대하여 사람 Low Density Lipoprotein(LDL)의 산화 억제 효과에 대하여 실험하였다. Streptomyces sp. BH-405의 배양액으로부터 분리 정제한 획분 band 2는 LDL에 대한 $5\mu\textrm{m}$ $CuSO_4$ 의 유도 산화를 측정한 결과 100 및 200 $\mu\textrm{g}$/mL에서 LDL의 산화억제 효과가 높았다. 그리고, band 2를 이용한 macrophage 및 J774 유도 LDL의 수식에 대한 항상화 효과도 native LDL에 비하여 높았다. 이때 같은 농도의 band 2를 첨가하여 산화 LDL의 전기영동의 이동거리를 측정한 결과 native LDL보다는 약간 높았으나 Oxid LDL의 대조군보다는 이동거리가 낮으며 공액2중결합의 생성억제 효과도 있었다. 사람 LDL의 산화에 대하여 macrophage 및 내피세포를 이용하여 125I-LDL 산화에 대하여 band 2를 각각 100 및 200 $\mu\textrm{g}$/mL씩 첨가하여 실험한 결과 사람 LDL의 분해는 대조구보다 낮았으며 용량 의존형의 결과를 나타내었다.

  • PDF