• Title/Summary/Keyword: Jahn-Teller

Search Result 58, Processing Time 0.02 seconds

Mössbauer Studies on Magnetoresistance in Chalcogenide Fe0.9M0.1Cr2S4 (M=Co, Ni, Zn) (Chalcogenide Fe0.9M0.1Cr2S4(M=Co, Ni, Zn)의 자기저항에 관한 Mössbauer 분광연구)

  • Park, Jae Yun;Lee, Byoung-Seob
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.2
    • /
    • pp.43-48
    • /
    • 2013
  • The Jahn-Teller distortion of chalcogenide $Fe_{0.9}M_{0.1}Cr_2S_4$ (M=Co, Ni, Zn) have been investigated by M$\ddot{o}$ssbauer spectroscopy. The crystal structures of $Fe_{0.9}M_{0.1}Cr_2S_4$ (M=Co, Ni, Zn) are cubic spinel at room temperature. Magnetoresistance measurements indicate these system is conducting-semiconducting transistion around $T_C$. Below $T_C$, the asymmetric line broadening is observed and considered to be dynamic Jahn-Teller distortion. Isomer shift value of the samples at room temperature was about 0.5 mm/s, which means that charge state of Fe ions is ferrous in character. The Ni substitutions for Fe occur to increase the Jahn-Teller relaxation. CMR properties could be explained with magnetic polaron due to Jahn-Teller effect, which is different from both the double exchange interactions of manganite system and the triple exchange interactions of chalcogenide $Cu_xFe_{1-x}Cr_2S_4$.

The Jahn-Teller Effect in the Iron Copper Spinel $CuFe_{2}O_{4}$ (철, 구리 스피넬 $CuFe_{2}O_{4}$의 Jahn-Teller 효과에 관한 연구)

  • 서정철;이민용
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.2
    • /
    • pp.123-127
    • /
    • 1995
  • $CuFe_{2}O_{4}$ was accomplished by chemical rrethod and the crystallographic and magnetic properties have been studied by $M\"{o}ssbauer$ spectroscopy and X-ray diffraction. The slowly cooled sample is found to have a tetragonal spinel structure with the lattice constant $a=8.26{\pm}0.05{\AA},\;c=8.75{{\pm}}0.05{\AA}$. The $M\"{o}ssbauer$ spectra between the room temperature to the Curie temperature show that the $Cu_{2+}$ ions at octahedral site have the Jahn-Teller effect and the sample exhibits a structural phase transition near 630K due to the Jahn-Teller effect. The Curie temperature is found to be 690K and it is lower than that of ceramic method.

  • PDF

Effects of f Electrons on the Elastic Properties of Rare Earth Compounds (f 전자가 희토류 화합물의 탄성 성질에 미치는 영향)

  • Nahm, Kyun;You, Sang-Koo;Kim, Chul-Koo
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.5
    • /
    • pp.261-264
    • /
    • 2005
  • The elastic constants, C', of $Th_{3}P_4$-type structure compounds, $La_{3}S_4\;and\;Ce_{3}S_4$, have been analyzed on the basis of band Jahn-Teller mechanism. The distinct difference between two compounds lies in the fact that $Ce^{3+}$ ion has a f electron which produces magnetism. It is shown that the band Jahn-Teller effect is sensitively influenced by the energy splitting of f electronic bands by a cubic crystal field in $Ce_{3}S_4$, and f electrons suppress the elastic softening effect. The energy splitting value obtained from the calculation of elastic constants is found to agree well with the experimental value obtained from the magnetic susceptibility measurement.

Magnetic and CMR Properties of Sulphospinel ZnxFe1-xCr2S4 (Spinel계 유화물 ZnxFe1-xCr2S4의 CMR 특성과 자기적 성질)

  • Park, Jae-Yun;Bak, Yong-Hwan;Kim, Kwang-Joo
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.137-141
    • /
    • 2005
  • The CMR properties and magnetic properties of sulphospinels $Zn_xFe_{1-x}Cr_2S_4$ have been explored by X-ray diffraction, magnetoresistance measurement, and $M\ddot{o}ssbauer$ spectroscopy. The crystal structures in the range of x=0.05, 0.1, 0.2 are cubic at room temperature. Magnetoresistance measurement indicates that these system is semiconducting below about 160 K. The temperature of maximum magnetoresistance is almost consistent with Curie temperature. The Zn substitutions for Fe occur to increase the Jahn-Teller relaxation and the electric quadrupole shift. CMR properties could be explained with Jahn-Teller effect, and half-metallic electronic structure, which is different from both the double exchange interactions of manganite La-Ca-Mn-O system and the triple exchange interactions of chalcogenide $Cu_xFe_{1-x}Cr_2S_4$.

A Study on the Capacity Fading and the Replacement of Surface Film at the Surface of $LiMn_2O_4$ Thin Film Electrode

  • Chung Kyung Yoon;Shu Dong;Kim Kwang-Bum
    • 한국전기화학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.57-65
    • /
    • 2002
  • The presence of tetragonal phase at the surface of $LiMn_2O_4$ pinicle due to a Jahn-Teller offset was previously reported to be one of the causes for capacity fading observed during cycling of $Li//Li_xMn_2O_4$ in 4V range. Further, it is reported that a Jahn-Teller effect in 4V range may be suppressed by substitution of Mn ions with Li ions or other transition metal ions. However, the direct evidence of the suppression of a Jahn-Teller effect in 4V range by substitution of Mn ions with other metal ions has not been reported. The dissolution and formation of surface film at the surface of $LiMn_2O_4$ electrodes also reportedly affect the capacity fading or rate capability. This study reports on the evidence of the onset and suppression of a Jahn-Teller effect in 4V range and the dissolution and formation of surface film at the surface of $LiMn_2O_4$ thin film electrodes using in situ bending beam method (BBM) in situ electrochemical quartz crystal microbalance (EQCM).

  • PDF

The Mossbauer Spectra Changes Due to the Jahn-Teller Distortion in Sulphur Spinel $Co_{0.95}Fe_{0.05}Cr_2S_4$ (유화 Spinel $Co_{0.95}Fe_{0.05}Cr_2S_4$에서 Jahn - Teller Distortion에 의한 Mossbauer 공명 흡수선의 변화에 관한 연구)

  • 서정철;이민용;고영복
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.5
    • /
    • pp.225-231
    • /
    • 1997
  • Sulphur Spinel $Co_{0.95}Fe_{0.05}Cr_2S_4$ has been studied with Mossbauer Spectroscopy between 4.2 K and room temperature. The $Fe^{2+}$ ion in a tetrahedral site is the Jahn-Teller active and the dynamic Jahn-Teller distortion starts below the magnetic ordering temperature. The distortion cause a quadrupole shift to appear which increases with decreasing temperature. The magnetic hyperfine field has a maximum at 100 k and then decreases with decreasing temperature. The magnitude of the interaction ratio R between the electric quadrupole and magnetic dipole interaction increases from 0 near the magnetic ordering temperature to 5.4 at 4.2 K. The optimum values of 0, the polar angle of the magnetic hyperfine field with respect to the principle axis of the electric field gradient (EFG) remains zero and the asymmetry of the EFG n is about 0.25. The simulations of Mossbauer spectra coincidence with the experimental results.

  • PDF