• Title/Summary/Keyword: Japanese Black Heifer

Search Result 3, Processing Time 0.02 seconds

Genetics of heifer reproductive traits in Japanese Black cattle

  • Setiaji, Asep;Oikawa, Takuro
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.2
    • /
    • pp.197-202
    • /
    • 2020
  • Objective: The objective of this study was to identify environmental factors strongly associated with and to estimate genetic parameters of reproductive traits in Japanese Black heifers. Methods: Data included reproduction records of Japanese Black heifers born between 2004 and 2014. First service non-return rate (NRR) to 56 days from first to successful insemination (FS), number of services per conception (IN), age at first calving (AFC) and gestation length were analyzed with the use of the general linear model. Genetic parameters were estimated with the use of the univariate animal model of the residual maximum likelihood. Results: Averages of reproductive traits over eleven years were assessed, and the effects of farm, year, month, artificial insemination technician and interaction of farm×year on the traits were determined. Estimated heritability of FS was very low and that of AFC was higher than that of the other traits. A close genetic relation was observed among NRR, IN, and FS; however, their heritabilities were very low. AFC shows favorable genetic correlation with IN and FS. Conclusion: Low heritabilities of most reproductive traits in Japanese Black heifers are strongly influenced by farm management practices, and that large residual variances make genetic evaluation difficult. Among the reproductive traits, AFC is potentially more useful for genetic improvement of heifer reproductive traits because it has high heritability and favorable genetic correlations with IN and FS.

Bayesian estimates of genetic parameters of non-return rate and success in first insemination in Japanese Black cattle

  • Setiaji, Asep;Arakaki, Daichi;Oikawa, Takuro
    • Animal Bioscience
    • /
    • v.34 no.7
    • /
    • pp.1100-1104
    • /
    • 2021
  • Objective: The objective of present study was to estimate heritability of non-return rate (NRR) and success of first insemination (SFI) by using the Bayesian approach with Gibbs sampling. Methods: Heifer Traits were denoted as NRR-h and SFI-h, and cow traits as NRR-c and SFI-c. The variance covariance components were estimated using threshold model under Bayesian procedures THRGIBBS1F90. Results: The SFI was more relevant to evaluating success of insemination because a high percentage of animals that demonstrated no return did not successfully conceive in NRR. Estimated heritability of NRR and SFI in heifers were 0.032 and 0.039 and the corresponding estimates for cows were 0.020 and 0.027. The model showed low values of Geweke (p-value ranging between 0.012 and 0.018) and a low Monte Carlo chain error, indicating that the amount of a posteriori for the heritability estimate was valid for binary traits. Genetic correlation between the same traits among heifers and cows by using the two-trait threshold model were low, 0.485 and 0.591 for NRR and SFI, respectively. High genetic correlations were observed between NRR-h and SFI-h (0.922) and between NRR-c and SFI-c (0.954). Conclusion: SFI showed slightly higher heritability than NRR but the two traits are genetically correlated. Based on this result, both two could be used for early indicator for evaluate the capacity of cows to conceive.

Different penalty methods for assessing interval from first to successful insemination in Japanese Black heifers

  • Setiaji, Asep;Oikawa, Takuro
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.9
    • /
    • pp.1349-1354
    • /
    • 2019
  • Objective: The objective of this study was to determine the best approach for handling missing records of first to successful insemination (FS) in Japanese Black heifers. Methods: Of a total of 2,367 records of heifers born between 2003 and 2015 used, 206 (8.7%) of open heifers were missing. Four penalty methods based on the number of inseminations were set as follows: C1, FS average according to the number of inseminations; C2, constant number of days, 359; C3, maximum number of FS days to each insemination; and C4, average of FS at the last insemination and FS of C2. C5 was generated by adding a constant number (21 d) to the highest number of FS days in each contemporary group. The bootstrap method was used to compare among the 5 methods in terms of bias, mean squared error (MSE) and coefficient of correlation between estimated breeding value (EBV) of non-censored data and censored data. Three percentages (5%, 10%, and 15%) were investigated using the random censoring scheme. The univariate animal model was used to conduct genetic analysis. Results: Heritability of FS in non-censored data was $0.012{\pm}0.016$, slightly lower than the average estimate from the five penalty methods. C1, C2, and C3 showed lower standard errors of estimated heritability but demonstrated inconsistent results for different percentages of missing records. C4 showed moderate standard errors but more stable ones for all percentages of the missing records, whereas C5 showed the highest standard errors compared with noncensored data. The MSE in C4 heritability was $0.633{\times}10^{-4}$, $0.879{\times}10^{-4}$, $0.876{\times}10^{-4}$ and $0.866{\times}10^{-4}$ for 5%, 8.7%, 10%, and 15%, respectively, of the missing records. Thus, C4 showed the lowest and the most stable MSE of heritability; the coefficient of correlation for EBV was 0.88; 0.93 and 0.90 for heifer, sire and dam, respectively. Conclusion: C4 demonstrated the highest positive correlation with the non-censored data set and was consistent within different percentages of the missing records. We concluded that C4 was the best penalty method for missing records due to the stable value of estimated parameters and the highest coefficient of correlation.