• Title/Summary/Keyword: Joining strength

Search Result 1,107, Processing Time 0.023 seconds

A Study on the Optimum Joining Condition in a Mechanical Press Joint (기계적 프레스 접합의 최적접합조건에 관한 연구)

  • Lee, Yong-Bok;Kim, Tae-Yun;Jeong, Jin-Seong;Choe, Ji-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.752-760
    • /
    • 2000
  • Mechanical press joining has been used in sheet metal joining processes because of its simple process and possibility of joining dissimilar metals, such as steel and aluminum. The strength of mechanical press joining varies with joining conditions. The optimum joining conditions considering tensile-shear and peel-tension strength have to be established to assure the reliability in the joining strength. Therefore, optimization of joining conditions has been investigated for improving joining strength of sheet metal. It is possible to obtain optimum strength from improvement on the joining strength of peel-tension mechanical press joint under multiaxial stress states.

Improvement of Joining Strength of Mechanical Joining Process of a Sheet Metal Pair (박판페어의 기계적 접합장치의 결합강도 개선에 관한 연구)

  • 윤희주;김태정;양동열;권순용;신철수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.29-32
    • /
    • 2002
  • The mechanical joining process of a sheet metal pair has been developed in order to replace the resistance spot welding process in case that joining of mechanically unweldable materials and coated sheet metals with different thickness are needed. Form-joining or clinching, a kind of mechanical joining process, is defined as joining process of a sheet metal pair by geometric constraint imposed by plastic deformation of workpieces without any additive part. It has been reported that the joining strength by commercial form-joining apparatus is 50∼70 percent of that by resistance spot welding. Therefore, a two-step form-joining process with a secondary punch is proposed. The device is designed to improve the joining strength by increasing the geometric constraint of the deformed shape by combining a primary punch, a secondary punch and a female die. In order to verify the improved joining strength by the designed process, the tensile-shear strength, the peel-tension strength and the asymmetric peel-tension strength are compared with those by the TOX process and resistance spot welding.

  • PDF

Analysis of Joining Strength in Electromagnetic Joining of Metals to High Toughness Polymers (금속과 고분자 재료의 접합강도 해석)

  • Son, Hui-Sik;Kim, Nam-Hwan;Lee, Jong-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.3
    • /
    • pp.110-116
    • /
    • 1992
  • Electromgnetic joining of aluminum alloy tubes to high toughness polyurethane rubber cores is studied in order to estimate the joining strength and to analyze the effect of the process variables. The equation which can estimate the joining strength is proposed under considering the elastic recovery of the polyurethane core and the radial shrinkage of the core by pulling it axially. The obtained results are as follows : 1) The joining strength is mainly dependent on the magnitude of residual elastic strain of the polyurethane core. 2) The radial shrinkage (residual strain reduction) of the core during the axial pulling causes the joining strength to decrease severely. The equation for the reduced axial strength is proposed and it is found that the estimated values agree well with experimental results. 3) The magnitude of radial shrinkage could be reduced for the smaller value of ratio l/r. 4) The joining strength in metal/polymer joining increases as the friction coefficient increases. But its effect of friction coefficient is insignificant in comparison with the case of metal/metal joining.

  • PDF

Effect of Curing Agent on the Curing Behavior and Joint Strength of Epoxy Adhesive (에폭시 접착제의 경화거동 및 접합강도에 미치는 경화촉매제의 영향)

  • Kim, Min-Su;Kim, Hae-Yeon;Yoo, Se-Hoon;Kim, Jong-Hoon;Kim, Jun-Ki
    • Journal of Welding and Joining
    • /
    • v.29 no.4
    • /
    • pp.54-60
    • /
    • 2011
  • Adhesive bonding is one of the most promising joining methods which may substitute for conventional metallurgical joining processes, such as welding, brazing and soldering. Curing behavior and mechanical properties of adhesive joint are largely dependent on the curing agent including hardener and catalyst. In this study, effects of curing system on the curing behavior and single-lap shear strength of epoxy adhesive joint are investigated. Dihydrazide, anhydride and dicyandiamide(DICY) were chosen as hardener and imidazole and triphenylphosphine(TPP) were chosen as catalyst. In curing behavior, TPP showed the delay of the curing rate for DICY and ADH at $160^{\circ}C$, compared to imidazole catalyst due to the high curing onset/peak temperature. DICY seemed to be most beneficial in the joint strength for both steel and Al adherends, although the type of adherends affected the shear strength of epoxy adhesive joint.

Evaluation of Failure Mode and Strength on Baking Time of Adhesive for Hybrid Joining (접착제 경화시점에 따른 하이브리드 접합 파단모드 및 접합강도 평가)

  • Choi, Chul-Young;Saha, Dulal Chandra;Choi, Won-Ho;Kim, Jun-Ki;Kim, Jong-Hoon;Park, Yeong-Do
    • Journal of Welding and Joining
    • /
    • v.29 no.6
    • /
    • pp.49-55
    • /
    • 2011
  • With the development of pre-painted steel sheets for automotive body application, a new joining method is required such as hybrid joining with combination of adhesive bonding and mechanical joining. The objective of this study is to investigate the effect of pre- and post-baking of adhesive bonding on failure mode and strength of hybrid joining of automotive steel sheets. Experiments show that the hybrid joining exhibits better bonding strength and displacement than conventional adhesive joining and mechanical fastening each. Comparison of pre- and post-baked hybrid joining results suggested that baking at $160^{\circ}C$ after mechanical joining was found to have higher joining properties than pre-baking condition. The prebaking condition changed its fracture mode from interfacial to button fracture. The changes in fracture mode with post-baking of hybrid joining was attributed to variation in neck thickness and undercut of joint.

Study on Prediction of Mechanical Joining Strength of Blow Motor Case Joint (블로우 모터 케이스 이음부 기계적 결합 강도 예측에 관한 연구)

  • Kim, Gug-Yong;Kwon, Il-Keun;Park, Jun-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.1
    • /
    • pp.81-87
    • /
    • 2017
  • In order to reduce the weight of the blow motor case and to maintain the strength of the motor joint, the mechanical joining strength is to be predicted. The true stress - true strain curves for finite element analysis were obtained through tensile tests of HGI and DP 780 steel. The mechanical joining strength was predicted through an explicit finite element analysis and the accuracy of the predicted results was verified by actual sample test. The regression equation for predicting the mechanical joining strength to the thickness of the DP 780 steel was derived. The minimum thickness of DP 780(1.2mm), which is equivalent to the joining strength of HGI(2.6mm), was derived from the equation.

Effect of Shape Parameters of Tool on Improvement of Joining Strength in Clinching (클린칭 접합력 향상을 위한 금형 형상변수의 영향도 평가)

  • Kim, J.Y.;Lee, C.J.;Lee, S.K.;Ko, D.C.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.18 no.5
    • /
    • pp.392-400
    • /
    • 2009
  • Clinching is a method of joining sheet metals together. This process can be substituted for the resistance spot welding on the joining of aluminum alloys. However, the joining strength of the clinching is lower than that of welding and riveting. The objective of this paper is to evaluate the effect of shape parameters of tools on the joining strength of the clinching and to optimize clinching tools. Twelve parameters have been selected as shape parameters on the clinching tools such as punch and die. The design of experiments (DOE) method is employed to investigate the effect of the shape parameters of tools on the joining strength of the clinching. The neck thickness and undercut of the clinched sheet metal after the clinching, and the separation load at detaching are estimated from the result of FEA using DEFORM. Optimal combination of shape parameters to maximize the joining strength of clinching is determined on the basis of the result of DOE and FEA. In order to validate the result of DOE and FEA, the experiment of clinching is performed for the optimal combination of shape parameters. It is shown from the result of the experiment that optimization of shape parameters improves the joining strength of clinching.

Improvement of joining strength between aluminum alloy and polymer by two - step anodization

  • Lee, Sung-Hyung;Yashiro, Hitoshi;Kure-Chu, Song-Zhu
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.4
    • /
    • pp.144-152
    • /
    • 2020
  • In the manufacturing process of joining of aluminum alloy and polymer, the strength of the metal-polymer joining is greatly influenced by the nanostructure of the oxide film. In this study, we investigated the dependence of joining strength on the thickness, structure, pore formation and surface roughness of the formed film. After the two-step anodization process, the surface oxide layer became thinner and rougher resulting in higher joining strength with the polymer. More specifically, after the two-step anodization, the surface roughness, Ra increased from 2.3 to 3.2 ㎛ with pore of three-dimensional (3D) nanostructure, and the thickness of the oxide film was thinned from 350 to 250 nm. Accordingly, the joining strength of the aluminum alloy with polymer increased from 23 to 30 MPa.

Corrosion Assessment of Al/Fe Dissimilar Metal Joint (Al/Fe 이종금속 접합부의 부식특성)

  • Kang, Minjung;Kim, Cheolhee;Kim, Junki;Kim, Dongcheol;Kim, Jonghoon
    • Journal of Welding and Joining
    • /
    • v.32 no.4
    • /
    • pp.55-62
    • /
    • 2014
  • The use of light-weight Al alloys in the automotive industry is increasing to meet requirements for fuel efficiency and emission reduction. Joining Al alloy to the conventional steel sheet is also very important issue with the increased use of Al alloy, and several joining processes have been introduced to enhance joining strength between dissimilar metals. This paper deals with a galvanic corrosion in the dissimilar metal joining. Salt spray tests up to 2000 hours were conducted on a self-piercing rivet, spot welded, adhesive bonded and weld-bonded joints, and cross-sections and tensile shear strength according the salt spray duration were analyzed at every 500-hour. Self-piercing rivet joint had relative low initial strength but the joint strength did not change regardless of the salt spray duration. The strength of other joints (spot welded, adhesive bonded and weld-bonded joints) decreased with the increase of salt spray duration and the corrosion behaviour of each joint was discussed.

An Experimental study on Improvement of Mechanical Press-Joining Strength of the Spin Drum Seaming Division in Washing Machine (스핀드럼 시밍부의 기계적 프레스 접합강도 향상에 관한 실험적 연구)

  • Kim, E.S.;Kim, B.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.127-131
    • /
    • 2006
  • There are being a lot of studies for achievement of high speed Dehydration, high-strength and Lightweight of washing machine in the latest washing machine business. It is essential that Press-joining Strength of Spin Drum Seaming division is improved .to attain that target. Generally, we are using Mechanical press-joining by Seaming and T.I.G (Tungsten Inert Gas) welding among part joint method. Mechanical press-joining method that is mainly using for Stainless Steel (STS430) Drum have lots of merit that consumption of energy is low more than welding and production costs cut down and generation of the corrosion is solved by removing weld zone defect and materials having different properties are enable to join without special equipment. But, it is difficult to realize joint strength required at high speed operation because joint strength of mechanical press-joining method is low remarkably in comparison with welding. Also, there are a lot of analysis difficulties and very limited research is under way due to the dynamic factor such as multistage plastic working, elastic recovery, residual stress etc. The results of this study show optimal joining condition for mechanical press-joining by performing lots of tensile joining strength test with various specimen under multi-change of important design factor such as seaming width, bead area and bead depth etc.

  • PDF