• Title/Summary/Keyword: Jordan research and training reactor

Search Result 11, Processing Time 0.02 seconds

Assessment of the Implementation of a Neutron Measurement System During the Commissioning of the Jordan Research and Training Reactor

  • Bae, Sanghoon;Suh, Sangmun;Cha, Hanju
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.504-516
    • /
    • 2017
  • The Jordan Research and Training Reactor (JRTR) is the first research reactor in Jordan, the commissioning of which is ongoing. The reactor is a 5-MWth, open-pool type, light-water-moderated, and cooled reactor with a heavy water reflector system. The neutron measurement system (NMS) applied to the JRTR employs a wide-range fission chamber that can cover from source range to power range. A high-sensitivity boron trifluoride counter was added to obtain more accurate measurements of the neutron signals and to calibrate the log power signals; the NMS has a major role in the entire commissioning stage. However, few case studies exist concerning the application of the NMS to a research reactor. This study introduces the features of the NMS and the boron trifluoride counter in the JRTR and shares valuable experiences from lessons learned from the system installation to its early commissioning. In particular, the background noise relative to the signal-to-noise ratio and the NMS signal interlock are elaborated. The results of the count rates with the neutron source and the effects of the discriminator threshold are summarized.

Comparison of first criticality prediction and experiment of the Jordan research and training reactor (JRTR)

  • Kim, Kyung-O.;Jun, Byung Jin;Lee, Byungchul;Park, Sang-Jun;Roh, Gyuhong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.14-18
    • /
    • 2020
  • Korea Atomic Energy Research Institute (KAERI) has carried out various neutronics experiments in the commissioning stage of the Jordan Research and Training Reactor (JRTR), and this paper introduces the results of first criticality prediction and experiment for the JRTR. The Monte Carlo Code for Advanced Reactor Design and analysis (McCARD) with the ENDF/B-VII.0 nuclear library was used for prediction calculations in the process of the first criticality approach, which was performed to provide reference for the first criticality experiment. In the experiment, fuel loading was carried out by measuring the inverse multiplication factor (1/M) to predict the number of fuel assemblies at the first criticality, and the first critical was reached on April 25, 2016. Comparing the first criticality prediction and experiment, the calculated and measured CAR (Control Absorber Rod) heights for the first criticality were 575 mm and 570.5 mm, respectively, that is, the difference between the two results was approximately 5 mm. From this result, it was confirmed that JRTR manufacturing and various experiments had successfully progressed as designed.

Document Management for Jordan Research and Training Reactor Project by ANSIM (원자력 통합안전경영시스템을 이용한 요르단연구로사업의 문서관리)

  • Park, Kook-Nam;Choi, Min-Ho;Kwon, Yongse
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.2
    • /
    • pp.113-118
    • /
    • 2016
  • Project management is a tool for smooth operation during a full cycle from the design to normal operation including the schedule, document, and budget management, and document management is an important work for big projects such as the JRTR (Jordan Research and Training Reactor). To manage the various large documents for a research reactor, a project management system was resolved, a project procedure manual was prepared, and a document control system was established. The ANSIM (Advanced Nuclear Safety Information Management) system consists of a document management folder, document container folder, project management folder, organization management folder, and EPC (Engineering, Procurement and Construction) document folder. First, the system composition is a computerized version of the Inter-office Correspondence (IOC), the Document Distribution for Agreement (DDA), Design Documents, and Project Manager Memorandum (PM Memo) works prepared for the research reactor design. Second, it reviews, distributes, and approves design documents in the system and approves those documents to register and supply them to the research reactor user. Third, it integrates the information of the document system-using organization and its members, as well as users' rights regarding the ANSIM document system. Throughout these functions, the ANSIM system has been contributing to the vitalization of united research. Not only did the ANSIM system realize a design document input, data load, and search system and manage KAERI's long-period experience and knowledge information properties using a management strategy, but in doing so, it also contributed to research activation and will actively help in the construction of other nuclear facilities and exports abroad.

Establishment of Document Control System for the Jordan Research and Training Reactor Project (요르단연구로건설사업 문서관리시스템 구축)

  • Park, Kook-Nam;Ko, Young-Cheol;Wu, Sang-Ik;Oh, Soo-Youl;Lee, Doo-Jeong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.4
    • /
    • pp.49-56
    • /
    • 2011
  • The Project of Jordan Research and Training Reactor (JRTR) officially launched in Aug. 2010. JRTR is the first made-in-Korea nuclear system to be built abroad by year 2015, and Korea Atomic Energy Research Institute (KAERI) is responsible for the design of major systems including the reactor core. While the PDCS (Project Document Control System) being operated by EPC company controls all the documents of the whole Project, KAERI is supposed to have its own system for KAERI documents. Meeting such a need; KAERI has implemented a document control for the JRTR Project into already existing ANSIM (KAERI Advanced Nuclear Safety Information Management) system. The documents of JRTR project to be controlled are defined in the PPM (Project Procedures Manual), QAP (Quality Assurance Procedure) and PEP (Project Execution Program). The ANSIM consists of the document management holder, document container holder and organization management holder. The document management holder, which is the most important part of ANSIM-JRTR, consists of the DDA (Document Distribution for Agreement), IOC (Inter-office Correspondence), PM Memo. (Project Manager Memorandum) and cover sheets of design documents. Other materials such as meeting minutes, sub-department materials and design information materials are stored in an independent COP (Community of Practice). This established computerized document control system, ANSIM, could lessen a burden for project management team and enhance the productivity as well.

Safety Classification of Systems, Structures, and Components for Pool-Type Research Reactors

  • Kim, Tae-Ryong
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.1015-1021
    • /
    • 2016
  • Structures, systems, and components (SSCs) important to safety of nuclear facilities shall be designed, fabricated, erected, and tested to quality standards commensurate with the importance of the safety functions. Although SSC classification guidelines for nuclear power plants have been well established and applied, those for research reactors have been only recently established by the International Atomic Energy Agency (IAEA). Korea has operated a pool-type research reactor (the High Flux Advanced Neutron Application Reactor) and has recently exported another pool-type reactor (Jordan Research and Training Reactor), which is being built in Jordan. Korea also has a plan to build one more pool-type reactor, the Kijang Research Reactor, in Kijang, Busan. The safety classification of SSCs for pool-type research reactors is proposed in this paper based on the IAEA methodology. The proposal recommends that the SSCs of pool-type research reactors be categorized and classified on basis of their safety functions and safety significance. Because the SSCs in pool-type research reactors are not the pressure-retaining components, codes and standards for design of the SSCs following the safety classification can be selected in a graded approach.

A Study on the Final Probabilistic Safety Assessment for the Jordan Research and Training Reactor (JRTR 연구용원자로에 대한 최종 확률론적 안전성평가)

  • Lee, Yoon-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.3
    • /
    • pp.86-95
    • /
    • 2020
  • This paper describes the work and the results of the final Probabilistic Safety Assessment (PSA) for the Jordan Research and Training Reactor (JRTR). This final PSA was undertaken to assess the level of safety for the design of a research reactor and to evaluate whether it is probabilistically safe to operate and reliable to use. The scope of the PSA described here is a Level 1 PSA, which addresses the risks associated with core damage. After reviewing the documents and its conceptual design, nine typical initiating events were selected regarding internal events during the normal operation of the reactor. AIMS-PSA (Version 1.2c) was used for the accident quantification, and FTREX was used as the quantification engine. 1.0E-15/yr of the cutoff value was used to deliminate the non-effective Minimal Cut Sets (MCSs) when quantifying the JRTR PSA model. As a result, the final result indicates a point estimate of 2.02E-07/yr for the overall Core Damage Frequency (CDF) attributable to internal initiating events in the core damage state for the JRTR. A Loss of Primary Cooling System Flow (LOPCS) is the dominant contributor to the total CDF by a single initiating event (9.96E-08/yr), and provides 49.4% of the CDF. General Transients (GTRNs) are the second largest contributor, and provide 32.9% (6.65E-08/yr) of the CDF.

Experimental Investigation of the CHF for the Narrow Rectangular Channel in the Downward Flow (좁은 사각 유로 내 하향류 유동 조건에서 임계열유속 실험 연구)

  • Kim, Hui Yung;Yun, Byong Jo;Bak, Jin Yeong;Park, Jong Hark;Chae, Heetaek;Park, Cheol
    • Journal of Energy Engineering
    • /
    • v.25 no.1
    • /
    • pp.153-162
    • /
    • 2016
  • Experimental investigation was carried out on the CHF(Critical Heat Flux) under downward flow condition in narrow rectangular channels simulating subchannel of plate-type-fuel for JRTR(Jordan Research and Training Reactor). The experiments covers the license requirement of the research reactor. Two test sections used in this study simulate full scale subchannels for fission moly uranium target and plate-type-fuel, respectively. From the experimental results, the parameters affecting on the CHF are investigated. By using experimental data, the existing CHF prediction models were evaluated. Finally, the applicability of correlations were analysed to predict CHF in the narrow rectangular channel under the downward flow condition.

Seismic Test of the Control Rod Drive Mechanism for JRTR (JRTR 제어봉구동장치의 내진시험)

  • Choi, Myoung-Hwan;Kim, Gyeong-Ho;Sun, Jong-Oh;Cho, Yeong-Garp
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.5
    • /
    • pp.552-558
    • /
    • 2016
  • A control rod drive mechanism(CRDM) is a reactor regulating system, which inserts, withdraws or maintains a control rod within a reactor core to control the reactivity of the core. The CRDM for Jordan Research and Training Reactor with 5MW power has been designed and fabricated based on the HANARO’s experience through KAERI and DAEWOO consortium. This paper describes the seismic test results to demonstrate the operability, the drop performance and the structural integrity of CRDM during or after seismic excitations. The seismic tests are carried out under 5 OBE and 1 SSE loads at three Test Rigs simulating the reactor structure and the pool top. From the tests, the CRDM is smoothly driven without a malfunction of stepping motor under OBE load. The pure drop time under OBE and SSE loads is measured as 1.169s and 1.855s to meet the design requirement. Also, it is found that the CRDM maintains the structural integrity without a change of the function and natural frequency before and after seismic loads.

Performance Qualification Test of the CRDM for JRTR (요르단 연구용원자로 제어봉구동장치의 성능검증시험)

  • Choi, M.H.;Cho, Y.G.;Kim, J.H.;Lee, K.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.12
    • /
    • pp.807-814
    • /
    • 2015
  • A control rod drive mechanism(CRDM) is a reactor regulating system, which inserts, withdraws or maintains a control rod containing a neutron absorbing material within a reactor core to control the reactivity of the core. The top-mounted CRDM for Jordan Research and Training Reactor(JRTR) with 5 MW power has been designed and fabricated based on the HANARO's experience through KAERI and DAEWOO consortium project. This paper describes the performance qualification test results to demonstrate the operability of a prototype and four production CRDMs during the reactor lifetime. The driving performance, the drop performance and the endurance tests for CRDM are carried out at a test rig simulating the actual reactor conditions. A vibration of internal components due to the coolant flow is also measured using a laser vibrometer. As a result, the CRDMs are driven having a good driving performance without a malfunction between command and output signals for the stepping motor. Also, the pure drop time and the impact acceleration are within 0.72 s and 4.2 g to meet the design requirements, and the vibrational displacement of control rod is measured as maximum $5.2{\mu}m$.

Document Flow for the Research Reactor Project in ANSIM Document Control System (ANSIM 문서관리시스템에서 연구로사업 문서흐름)

  • Park, Kook-Nam;Kim, Kwon-Ho;Kim, Jun-Yeon;Wu, Sang-Ik;Oh, Soo-Youl
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.4
    • /
    • pp.18-24
    • /
    • 2013
  • A document control system (DCS), ANSIM (KAERI Advanced Nuclear Safety Information Management) was designed for the purpose of documents preparation, review, and approvement for JRTR (Jordan Research and Training Reactor) project. The ANSIM system consists of a document management, document container, project management, organization management, and EPC (Engineering, Procurement and Construction) document folder. The document container folder run after specific contents, a revision history of the design documents and drawings are issued in KAERI. The EPC document work-scope is a registry for incoming documents in ANSIM, the assignment of a manager or charger, document review, preparing and outgoing PM memorandum as attached the reviewed paper. On the other hand, KAERI is aiming another extra network server for the NRR (New Research Reactor) by the end of this year. In conclusion, it is the first, computation system of DCS that provides document form, document number, and approval line. Second, ANSIM increases the productivity of performance that can be recognized the document work-flow of oneself and all participants. Finally, a plenty of experience and knowledge of nuclear technology can be transmitted to next generation for the design, manufacturing, testing, installation, and commissioning. Though this, ANSIM is expected to allow the export of a knowledge and information system as well as a research reactor.