• Title/Summary/Keyword: K-L transformation

Search Result 553, Processing Time 0.029 seconds

Obtaining the zwitterionic form of L-lysine from L-lysine monohydrochloride by electrodialysis

  • Aghajanyan, A.E.;Tsaturyan, A.O.;Hambardzumyan, A.A.;Saghyan, A.S.
    • Membrane and Water Treatment
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • The process of electromembrane transformation of L-lysine monohydrochlorides into their zwitterionic form in four- and two-chamber electrodialysis apparatus was investigated. The process of transformation at various concentrations of lysine monohydrochloride (0.1-0.6 mol.L-1) was studied and it was established that at the optimum density of current optimal concentrations of lysine hydrochloride during electrodyalisis was in the range of 0.2-0.4 mol.L-1. It was determined that the process of total transformation was accomplished when pH of the lysine solution achieved 10. Changes of concentrations of $Cl^-$ ions and lysine diffused into the neighboring chamber were determined depending on the time. The method developed by us allows adjusting the removal coefficient of $Cl^-$ ions during transformation to a maximal value, the losses of lysine diffused into the next chamber after its return to the technological cycle being less than 1.0 %. The specific energy consumption during the process of transformation in two- and four-chamber electrodialyzers was 0.19 and 0.205 A.h.kg-1 and the current efficiency was 75.9 and 73.1 %, correspondingly. Study of the process of electromembrane transformation allowed obtaining zwitterionic form of L-lysine from L-lysine monohydrochloride with minimal reagent and energy consumption.

Development of Transgenic Orchardgrass (Dactylis glomerata L.) Using Agrobacterium tumefaciens

  • Lee, Hyoshin;Lee, Byung-Hyun;Jinki Jo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.20 no.2
    • /
    • pp.103-108
    • /
    • 2000
  • To produce of transgenic orchardgrass, the seed-derived calli of orchardgrass (Dactylis glomerata L.) co-cultivated with Agrobacterium turnefaciens EHAlOl harboring binary vector pIG121-Hm were selected with hygromycin and then transferred onto N6 regeneration medium containing 1 rngl l of NAA, 5 rngl l of kinetin, 250 rngl l of carbenicillin and 50 mg/ l of hygromycin. The efficiency of transformation was differed on cultivars, that is, 'Potomac' appeared 12% of transformation efficiency while 'Amba' did 5.5%. The addition of acetosyringone during co-cultivation was a key to successhl transformation of orchardgrass. Transgene fragments were identified by PCR analysis and the constitutive expression of GUS gene was confirmed by Northern blot analysis. (Key words : Acetosyringone, Agrobacterium tumefaciens, Orchardgrass (Dactylis glomerata L.), Transformation)

  • PDF

The Effects of Physicochemical Factors and Cell Density on Nitrite Transformation in a Lipid-Rich Chlorella

  • Liang, Fang;Du, Kui;Wen, Xiaobin;Luo, Liming;Geng, Yahong;Li, Yeguang
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.12
    • /
    • pp.2116-2124
    • /
    • 2015
  • To understand the effects of physicochemical factors on nitrite transformation by microalgae, a lipid-rich Chlorella with high nitrite tolerance was cultured with 8 mmol/l sodium nitrite as sole nitrogen source under different conditions. The results showed that nitrite transformation was mainly dependent on the metabolic activities of algal cells rather than oxidation of nitrite by dissolved oxygen. Light intensity, temperature, pH, NaHCO3 concentrations, and initial cell densities had significant effects on the rate of nitrite transformation. Single-factor experiments revealed that the optimum conditions for nitrite transformation were light intensity: 300 μmol/m2/s; temperature: 30℃ pH: 7-8; NaHCO3 concentration: 2.0 g/l; and initial cell density: 0.15 g/l; and the highest nitrite transformation rate of 1.36 mmol/l/d was achieved. There was a positive correlation between nitrite transformation rate and the growth of Chlorella. The relationship between nitrite transformation rate (mg/l/d) and biomass productivity (g/l/d) could be described by the regression equation y = 61.3x (R2 = 0.9665), meaning that 61.3 mg N element was assimilated by 1.0 g dry biomass on average, which indicated that the nitrite transformation is a process of consuming nitrite as nitrogen source by Chlorella. The results demonstrated that the Chlorella suspension was able to assimilate nitrite efficiently, which implied the feasibility of using flue gas for mass production of Chlorella without preliminary removal of NOX.

Investigation of Transformation Efficiency of Rice Using Agrobacterium tumefaciens and High Transformation of GPAT (glycerol-3-phosphate acyltransferase) Gene Relative to Chilling Tolerance (Agrobacterium tumefaciens를 이용한 벼의 형질전환 효율의 검토 및 내한성 관련 GPAT (glycerol-3-phosphate acyltransferase) 유전자의 형질전환)

  • Seo, Mi-Suk;Bae, Chang-Hyu;Choi, Dae-Ock;Rhim, Seong-Lyul;Seo, Suk-Chul;Song, Pill-Soon;Lee, Hyo-Yeon
    • Journal of Plant Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.85-92
    • /
    • 2002
  • This study has been focused on improving transformation efficiency of rice using Agrobacterium tumefaciens. We have demonstrated the effect of this system when the GPAT gene related to the cold-resistance was transferred by Agrobacterium tumefaciens in rice. Transformation conditions were modified using intron $\beta$-glucuronidase (GUS) expression as a reporter gene in the rice. In this study, mature seed-derived calli of rice (Oruza sativa L. cv. Dongjin) were pre-cultured for 3 days and then infected with Agrobacterium. When this infected calli were cultured in the dark for 10 days on co-cu]lure medium containing 50 mg/L of CaCl$_2$, 30 mg/L of acetosyringone, 2 mg/L of 2,4-D, 120 mg/L of betaine, high GUS expression was observed. In the present transformation system, the efficiency of transformation of GPAT gene was about 54%. Stable integration of GPAT gene into chromosomal DNA was proven by southern blot analysis of genomic DNA isolated from T$_{0}$ progenies. The progenies (T1 generation) derived from primary transformant of 5 lines were segregated with a 3 (resistant) : 1 (sensitive ratio) in medium containing hygromycin. This high frequency transformation system can be used as a useful tool in transformation of another monocotyledon.n.

CHARACTERIZATION OF GLOBALLY-UNIQUELY-SOLVABLE PROPERTY OF A CONE-PRESERVING Z-TRANSFORMATION ON EUCLIDEAN JORDAN ALGEBRAS

  • SONG, YOON J.
    • Journal of applied mathematics & informatics
    • /
    • v.34 no.3_4
    • /
    • pp.309-317
    • /
    • 2016
  • Let V be a Euclidean Jordan algebra with a symmetric cone K. We show that for a Z-transformation L with the additional property L(K) ⊆ K (which we will call ’cone-preserving’), GUS ⇔ strictly copositive on K ⇔ monotone + P. Specializing the result to the Stein transformation SA(X) := X - AXAT on the space of real symmetric matrices with the property $S_A(S^n_+){\subseteq}S^n_+$, we deduce that SA GUS ⇔ I ± A positive definite.

Optimization of Regeneration Condition Under Agrobacterium-mediated Transformation in in vitro Cultured Korean Soybean

  • Kantayos, Vipada;Bae, Chang-Hyu
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.36-36
    • /
    • 2018
  • Soybean is the important crop in Asian countries as protein source, oil production and animal feed. Improving soybean using genetic transformation is the principal tool in nowadays. Developing herbicide resistant transgenic soybean plants through Agrobacterium-mediated transformation has been worked in many previous studied. However, the transformation efficiency is still low. Many attempts try to find the optimum media condition for plant regeneration after infection. After transformation, the plant regeneration is very important condition to promote growth of transgenic plant. In this study, we optimized a regeneration condition for two Korean soybean cultivar, Dawonkong and Pungsannamulkong using cotyledon, cotyledonary nodes and hypocotyl as explant. The results showed that shoot regeneration of cotyledonary nodes on B5 medium containing 2 mg/L 6-benzylaminopurine showed the highest percentage of regeneration in Dawonkong (75.8%) while Pungsannamulkong presented high number of shoots 2.12 shoots per explant. For transformation condition, co-cultivation in 7 days showed a high number of GUS positive expression. Most of explants can survived under media including 5 mg/L of glufocinate which refers phosphinotricin for 2-week selection. Washing with 400 mg/L of cefotaxime in several times and selection in plant regeneration media with 400 mg/L of cefotaxime can prevent bacteria growth, effectively.

  • PDF

Technical Development for Large DNA Fragment Transformation in Plants

  • Park, Su-Ryun;Seo, Mi-Suk;Lee, Sang-Kug;Park, Jee-Young;Kim, Hye-Ran;Lee, Hyo-Yeon;Bang, Jae-Wook;Lim, Yong-Pyo
    • Journal of Plant Biotechnology
    • /
    • v.2 no.2
    • /
    • pp.89-96
    • /
    • 2000
  • For large DNA fragment transformation in dicots and monocots, BIBAC2 vector system was applied to Arabidopsis thaliana and Oryza sativa L. cv. Jinmi as a model plant, respectively. For Arabidopsis, the Th1 gene in T23L3 BAC clone whose size is about 90 kb was used as the target gene source for transformation. Because T23L3 BAC clone was originally constructed in pBelloBAC11, the target gene was reconstructed into BIBAC2. As the results of reconstruction, 476 colonies were survived in selection medium containing 40 mg/L kanamycin. In colony hybridization analysis, 24 out of 476 colonies exhibited positive signals. In the pulsed-field gel electrophoresis analysis, 11 out of 24 positive clones exhibited the band at the location of 90 kb. In Southern hybridization, positive signal band at the location of 90 kb was observed in all 11 transformants. Using these verified clones, Agrobacterium-mediated transformation was applied to Arabidopsis thaliana th1-201 mutant for genetic complementation test. Twelve thousands T$_1$ seeds were harvested, and antibiotic selection test is being analyzed to verify whether these seeds were transformed. for rice, COR356 that contains 150 kb human genomic DNA in a BIBAC2 vector was used as the target gene. As the results of transformation, 151 out of 210 co-cultivated calli were survived in selection medium containing 5 mg/L hygromycin, and 45 out of 151 survived calli were regenerated into plants. Transformation efficiency was 21.6%. Progeny test using 71 seeds is being analyzed now. These results provide the potential that large DNA fragments can be transferred into both dicots and monocot by Agrobacterium-mediate d transformation system.

  • PDF

Molecular and Cytogenetic Analysis of Transgenic Plants of Rice(Oryza sativa L.) Produced by Agrobacterium-mediated Transformation

  • Cho, Joon-Hyeong;Kim, Yong-Wook
    • Plant Resources
    • /
    • v.7 no.1
    • /
    • pp.39-46
    • /
    • 2004
  • To demonstrate the importance of transformation efficiency in independent event, molecular and cytogenetic analysis were conducted with genomic DNA and chromosome of transgenic plants produced by Agrobacterium tumefeciens LBA4404 (pSBM-PPGN: gusA and bar). Selection ratios of putative transgenic calli were similar in independent experiments, however, transformation efficiencies were critically influenced by the type of regeneration media. MSRK5SS-Pr regeneration mediun, which contains 5 mgL$^{-1}$ kinetin, 2% (w/v) sucrose in combination with 3% (w/v) sorbitol, and 500 mgL$^{-1}$ proline, was efficient to produce transgenic plant of rice from putative transgenic callus in the presence of L-phosphinotricin (PPT). With MSRK5SS-Pr medium, transformation efficincies of Nagdongbyeo were significantly enhanced from 3.7% to 6.3% in independent callus lines arid from 7.3% to 19.7% in plants produced, respectively. Stable integration and expression of bar gene were confirmed by basta herbicide assay, PCR amplification and Southern blotting of bar gene, and fluorescence in situ hybridization (FISH) analysis using pSBM-PPGN as a probe. In Southern blot analysis, diverse band patterns were observed in total 44 transgenic plants regenerated from 20 independent PPT resistant calli showing from one to five copies of T-DNA segments, however, the transformants obtained from one callus line showed the same copy numbers with the same fractionized band patterns.

  • PDF

Improvement of Transformation Efficiencies using Agrobacterium-Mediated Transformation of Korean Rice

  • Cho, Joon-Hyeong;Lee, Jang-Yong;Kim, Yong-Wook;Lee, Myoung-Hoon;Park, Seong-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.1
    • /
    • pp.61-68
    • /
    • 2004
  • A reproducible transformation system via optimized regeneration media for Korean rice cultivars was established using Agrobacterium tumefeciens LBA4404 (pSBM-PPGN; gusA and bar). Although japonica rice genotypes were easier to produce transgenic plants compared to Tongil type cultivars, transformation efficiencies were not always correlated with regeneration efficiencies of non-transgenic callus on the control medium. Regeneration efficiencies of Donganbyeo, Ilmibyeo, and Manchubyeo were over 50% in non-transgenic control, however, transformation efficiencies were significantly low when only sucrose was added to the media as a carbon source. However, the medium, MSRK5SS-Pr (or MSRK5SM-Pr), that contains $5\textrm{mgL}^{-1}$ kinetin, $0.5\textrm{mgL}^{-1}$ NAA, 2 % sucrose (or maltose), 3% sorbitol, and $500\textrm{mgL}^{-1}$ proline, was the most efficient not only for regeneration of non-transgenic callus but also for regeneration of transgenic callus in the presence of L-phosphinotricin (PPT). Average transformation efficiencies of 16 Korean rice cultivars were significantly enhanced by using the optimized medium from 1.5% to 5.8% in independent callus lines and from 2.9% to 19.4% in tromsgenic plants obained. Approximately 98.9% (876 out of 885) transgenic plants obtained on optimized media showed basta resistance. Stable integration, inheritance and expression of gusA and bar genes were continued by GUS assay and PCR and Southern analysis of the bar gene. With Pst1 digestion of genomic DNA of transgenic plants, one to five copies of T-DNA segment were observed; however, 76% (19 out of 25 transgenic plants) has low copy number of T-DNA. The transformants obtained from one callus line showed the same copy numbers with the same fractionized band patterns.

Genetic Transformation of Watermelon (Citrullus vulgaris Schard.) by Callus Induction (캘러스 유도에 의한 수박 형질전환)

  • Kwon, Jung-Hee;Park, Sang-Mi;Lim, Mi-Young;Shin, Yoon-Sup;Harn, Chee-Hark
    • Journal of Plant Biotechnology
    • /
    • v.34 no.1
    • /
    • pp.37-45
    • /
    • 2007
  • The genetic transformation of watermelon by Agrobacterium has been known very difficult and a few successful cases have been reported by obtaining the direct shoot formation. However, since this direct shoot formation is not guaranteed the stable transformation, the stable transformation with reproducibility is required by a different approach such as a callus induced manner. The best conditions for inducing the callus from cotyledon and root explants of watermelon were 2 mg/L zeatin + 0.1 mg/L IAA and 2 mg/L BA + 0.1 mg/L 2,4-D, respectively. The GFP expression in the callus was identified and monitored through fluorescent microscopy after transformation with pmGFP5-ER vector. Paromomycin rather than kanamycin was used for selecting the nptll gene expression because it was more effective to select the watermelon explants. Four different callus types were observed and the solid green callus showed stronger GFP expression. The highest frequency of GFP expression in the callus developed from cotyledon was 9.0% (WM8 inbred line), while the highest frequency from root was 8.3% (WM6 inbred line). The WMV-CP was transformed using the method of GFP transformation and the genetic transformation of WMV-CP was confirmed by PCR and Southern blot analysis. Here we present a system for callus induction of watermelon explant and the callus induced method would facilitate the establishment of stable watermelon transformation.