• Title/Summary/Keyword: KHCS

Search Result 11, Processing Time 0.023 seconds

A Study on the Traffic Assignment Considering Unsignalized Intersection Delay (비신호 교차로 지체를 반영한 통행배정 기초연구)

  • Park, Byung-Ho;Park, Sang-Hyuk;Hong, Yung-Sung;Kim, Jin-Sun
    • International Journal of Highway Engineering
    • /
    • v.12 no.2
    • /
    • pp.1-7
    • /
    • 2010
  • This study deals with the unsignalized intersection delay in the urban transportation demand forecasting. The objectives are to develop the unsignalized intersection delay models and to comparatively analyze the applicability of the above models. In pursuing the above, this study gives particular attentions to simulating by KHCS program and implementing the case study of Cheongju using EMME/2. The major findings are the followings. First, the 8 unsignalized intersection delay models were developed through 480 simulating results, which are all statistically significant. Second, the estimates by the unsignalized delay models were analyzed to be most fitted to the observed traffic volume data.

PtdIns(3,5)P2 5-phosphatase Fig4 Interacts with Kinesin Superfamily 5A (KIF5A) (PI(3,5)P2 5-phosphatase Fig4와 Kinesin superfamily 5A (KIF5A)의 결합)

  • Jang, Won Hee;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.24 no.1
    • /
    • pp.14-19
    • /
    • 2014
  • Kinesin-1 consists of two heavy chains (KHCs), also called KIF5s, and two light chains (KLCs) that form a heterotetrameric complex. Here, we demonstrate the binding of a neuronal KHC, KIF5A, to the carboxyl (C)-terminal tail region of Fig4 (also known as Sac3), a phosphatase that removes the 5-phosphate from phosphatidylinositol-3,5-bisphosphate ($PtdIns(3,5)P_2$). Fig4 bound to the C-terminal region of KIF5A but not to other KHCs (KIF5B and KIF5C) and KLC1 in yeast two-hybrid assays. The interaction was further confirmed in a glutathione S-transferase pull-down assay and by co-immunoprecipitation. Anti-KIF5A antibody co-immunoprecipitated Fig4 with KIF5A from mouse brain extracts. These results suggest that kinesin-1 could transport the Fig4-associated protein complex or cargo in cells.

A Comparative Study on the Mean Control Delay by Signalized Intersections by the Analysis Model (분석모형별 신호교차로 평균제어지체 비교·분석 연구)

  • Lee, kyu soon;Park, Jin Woo;Sung, Sam Hyun;Lee, Tak Soo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.1
    • /
    • pp.83-93
    • /
    • 2020
  • The time delay is used as a major indicator of the level of traffic congestion on traffic crossroads. For this purpose, the Daechi Station intersection where traffic congestion occurs and the Yeongdong 5 Bridge intersection where the traffic condition is relatively good, and the average lag time based on the field survey with the lag time calculated various simulation programs. comparison of the average control delay of the field survey data the signal intersection analysis model the KHCS Dechi intersection 7.7 second / vehicle Young dong 5 bridge intersection 7.9 second / vehiclehe VISSIM showed a difference Dechi intersection 21.1 second / vehicle and Young dong 5 bridge intersection 8.1 second / vehiclehe T7F showed a difference Dechi intersection 3.3 second / vehicle and Young dong 5 bridge intersection 9.3 second / vehicle. Analyzing the same intersection proved that the results differed from one simulation model to another.

Interaction of CLIP-170, a Regulator of Microtubule Plus End Dynamics, with Kinesin 1 via KIF5s (미세소관의 plus end dynamics를 조절하는 CLIP-170과 kinesin 1의 KIF5s를 통한 결합)

  • Jang, Won Hee;Jeong, Young Joo;Lee, Won Hee;Kim, Mooseong;Kim, Sang-Jin;Urm, Sang-Hwa;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.27 no.6
    • /
    • pp.673-679
    • /
    • 2017
  • Microtubules are long rods in the cytoplasm of cells that plays a role in cell motility and intracellular transport. Microtubule-based transport by motor proteins is essential in intracellular transport. Kinesin 1 is a molecular motor protein that mediates the intracellular transport of various membranous vesicles, mRNAs, and proteins along microtubules. It is comprised of two heavy chains (KHCs, also called KIF5s) and two light chains (KLCs). KIF5s bear a motor domain in their amino (N)-terminal regions and interact with various cargoes through the cargo-binding domain in their carboxyl (C)-terminal regions. To identify proteins interacting with KIF5B, yeast two-hybrid screening was performed, and a specific interaction with the cytoplasmic linker protein 170 (CLIP-170), a plus end microtubule-binding protein, was found. The coiled-coil domain of CLIP-170 is essential for interactions with KIF5B in the yeast two-hybrid assay. CLIP-170 bound to the cargo-binding domain of KIF5B. Also, other KIF5s, KIF5A and KIF5C, interacted with CLIP-170 in the yeast two-hybrid assay. In addition, glutathione S-transferase (GST) pull-downs showed that KIF5s specifically interacted with CLIP-170. An antibody to KIF5B specifically co-immunoprecipitated CLIP-170 associated with KIF5B from mouse brain extracts. These results suggest that kinesin 1 motor protein may transport CLIP-170 in cells.

The Scaffolding Protein WAVE1 Associates with Kinesin 1 through the Tetratricopeptide Repeat (TPR) Domain of the Kinesin Light Chain (KLC) (Kinesin Light Chain (KLC)의 Tetratricopeptide Repeat (TPR) 도메인을 통한 Scaffold 단백질 WAVE1과 Kinesin 1의 결합)

  • Jang, Won Hee;Jeong, Young Joo;Urm, Sang-Hwa;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.26 no.8
    • /
    • pp.963-969
    • /
    • 2016
  • Kinesin superfamily proteins (KIFs) are microtubule-dependent molecular motor proteins essential for the intracellular transport of organelles and protein complexes in cells. Kinesin 1 is a member of those KIFs that transport various cargoes, including organelles, synaptic vesicles, neurotransmitter receptors, cell signaling molecules, and mRNAs through interaction between its light chain subunit and the cargoes. Kinesin light chains (KLCs) are non-motor subunits that associate with the kinesin heavy chain (KHC) dimer. KLCs interact with many different binding proteins, but their particular binding proteins have not yet been fully identified. We used the yeast two-hybrid assay to identify proteins that interact with the tetratricopeptide repeat (TPR) domain of KLC1. We found an interaction between the TPR domain of KLC1 and Wiskott-Aldrich syndrome protein family member 1 (WAVE1), a member of the WASP/WAVE family involved in regulation of actin cytoskeleton. WAVE1 bound to the six TPR domain-containing regions of KLC1 and did not interact with KHCs (KIF5A, KIF5B, and KIF5C) in the yeast two-hybrid assay. The carboxyl (C)-terminal verprolin-cofilin-acidic (VCA) domain of WAVE1 is essential for interaction with KLC1. Also, other WAVE isoforms (WAVE2 and WAVE3) interacted with KLC1 in the yeast two-hybrid assay. When co-expressed in HEK-293T cells, WAVE1 co-localized with KLC1 and co-immunoprecipitated with KLC1 and KIF5B. These results suggest that kinesin 1 motor protein may transport WAVE complexes or WAVE-coated cargoes in cells.

APP Tail 1 (PAT1) Interacts with Kinesin Light Chains (KLCs) through the Tetratricopeptide Repeat (TPR) Domain (APP tail 1 (PAT1)과 kinesin light chains (KLCs)의 tetratricopeptide repeat (TPR) domain을 통한 결합)

  • Jang, Won Hee;Kim, Sang-Jin;Jeong, Young Joo;Jun, Hee Jae;Moon, Il Soo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.22 no.12
    • /
    • pp.1608-1613
    • /
    • 2012
  • A conventional kinesin, KIF5/Kinesin-I, transports various cargoes along the microtubule through interaction between its light chain subunit and the cargoes. Kinesin light chains (KLCs) interact with many different cargoes using their tetratricopeptide repeat (TPR) domain, but the mechanism underlying recognition and binding of a specific cargo has not yet been completely elucidated. We used the yeast two-hybrid assay to identify proteins that interact with the TPR domain of KLC1. We found an interaction between the TPR domain of KLC1 and an amyloid precursor protein (APP)-binding protein PAT1 (protein interacting with APP tail 1). The yeast two-hybrid assay demonstrated that the TPR domain-containing region of KLC1 mediated binding to the C-terminal tail region of PAT1. PAT1 also bound to KLC2 but not to kinesin heavy chains (KIF5A, KIF5B, and KIF5C) in the yeast two-hybrid assay. These protein-protein interactions were also observed in the glutathione S-transferase (GST) pull-down assay and by co-immunoprecipitation. Anti-PAT1 antibody as well as anti-APP anti-body co-immunoprecipitated KLC and KHCs associated with PAT1 from mouse brain extracts. These results suggest that PAT1 could mediate interactions between Kinesin-I and APP containing vesicles.

The β Subunit of Heterotrimeric G Protein Interacts Directly with Kinesin Heavy Chains, Kinesin-I (Kinesin-I의 kinesin heavy chains과 직접 결합하는 heterotrimeric G protein의 β subunit의 규명)

  • Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.20 no.8
    • /
    • pp.1166-1172
    • /
    • 2010
  • Kinesin-I exists as a tetramer of two heavy chains (KHCs, also called KIF5s), which contain the amino (N)-terminal motor domain and carboxyl (C)-terminal domain, as well as two light chains (KLCs), which bind to the KIF5s (KIF5A, KIF5B and KIF5C) stalk region. To identify the interaction proteins for KIF5A, yeast two-hybrid screening was performed and a specific interaction with the ${\beta}$ subunit of heterotrimeric G proteins ($G{\beta}$) was found. $G{\beta}$ bound to the amino acid residues between 808 and 935 of KIF5A and to other KIF5 members in the yeast two-hybrid assay. The WD40 repeat motif of $G{\beta}$ was essential for interaction with KIF5A. In addition, these proteins showed specific interactions in the glutathione S-transferase (GST) pull-down assay. An antibody to KIF5s specifically co-immunoprecipitated KIF5s associated with heterotrimeric G proteins from mouse brain extracts. These results suggest that kinesin-I motor protein transports heteroterimeric G protein attachment vesicles along microtubules in the cell.

Interaction of Ras-GTPase-activating Protein SH3 Domain-binding Proteins 2, G3BP2, With the C-terminal Tail Region of KIF5A (Ras-GTPase-activating protein SH3 domain-binding proteins 2, G3BP2와 KIF5A C-말단 꼬리 영역과의 결합)

  • Jeong, Young Joo;Jang, Won Hee;Lee, Won Hee;Kim, Mooseong;Kim, Sang-Jin;Urm, Sang-Hwa;Moon, Il Soo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.27 no.10
    • /
    • pp.1191-1198
    • /
    • 2017
  • Vesicles and organelles are transported along microtubule and delivered to appropriate compartments in cells. The intracellular transport process is mediated by molecular motor proteins, kinesin, and dynein. Kinesin is a plus-end-directed molecular motor protein that moves the various cargoes along microtubule tracks. Kinesin 1 is first isolated from squid axoplasm is a dimer of two heavy chains (KHCs, also called KIF5s), each of which is associated with the light chain (KLC). KIF5s interact with many different binding proteins through their carboxyl (C)-terminal tail region, but their binding proteins have yet to be specified. To identify the interacting proteins for KIF5A, we performed the yeast two-hybrid screening and found a specific interaction with Ras-GTPase-activating protein (GAP) Src homology3 (SH3)-domain-binding protein 2 (G3BP2), which is involved in stress granule formation and mRNA-protein (mRNP) localization. G3BP2 bound to the C-terminal 73 amino acids of KIF5A but did not interact with the KIF5B, nor the KIF5C in the yeast two-hybrid assay. The arginine-glycine-glycine (RGG)/Gly-rich region domain of G3BP2 is a minimal binding domain for interaction with KIF5A. However, G3BP1 did not interact with KIF5A. When co-expressed in HEK-293T cells, G3BP2 co-localized with KIF5A and was co-immunoprecipitated with KIF5A. These results indicate that G3BP2, which was originally identified as a Ras-GAP SH3 domain-binding protein, is a protein that interacts with KIF5A.

Ferritin, an Iron Storage Protein, Associates with Kinesin 1 through the Cargo-binding Region of Kinesin Heavy Chains (KHCs) (철 저장 단백질 ferritin과 kinesin 1 결합 규명)

  • Jang, Won Hee;Jeong, Young Joo;Lee, Won Hee;Kim, Mooseong;Kim, Sang-Jin;Urm, Sang-Hwa;Moon, Il Soo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.26 no.6
    • /
    • pp.698-704
    • /
    • 2016
  • The intracellular transport of organelles and protein complexes is mediated by kinesin superfamily proteins (KIFs). The first kinesin, kinesin 1, was identified as a molecular motor protein that moves various organelles and protein complexes along the microtubule rails in cells. Kinesin 1 is a tetramer of two heavy chains (KHCs, also called KIF5s) and two kinesin light chains (KLCs). KIF5s interact with many different proteins through their tail region, but their binding proteins have not yet been fully identified. To identify the interaction proteins for KIF5A, we performed yeast two-hybrid screening and found a specific interaction with ferritin heavy chain (Frt-h), which has a role in iron storage and detoxification. Frt-h bound to the amino acid residues between 800 and 940 of KIF5A and to other KIF5s in the yeast two-hybrid assay. The coiled-coil domain of Frt-h is essential for interaction with KIF5A. In addition, ferritin light chain (Frt-l) interacted with KIF5s in the yeast two-hybrid assay. In addition, these proteins showed specific interactions in the glutathione S-transferase (GST) pull-down assay. An antibody to KHC specifically co-immunoprecipitated Frt-h and Frt-l from mouse brain extracts. These results suggest the kinesin 1 motor protein may transport the ferritin complex in cells.

JSAP1 Interacts with Kinesin Light Chain 1 through Conserved Binding Segments (JSAP1과 Kinesin Light Chain 1의 결합 및 결합부위 규명)

  • Kim, Sang-Jin;Lee, Chul-Hee;Park, Hye-Young;Yea, Sung-Su;Jang, Won-Hee;Lee, Sang-Kyeong;Park, Yeong-Hong;Cha, Ok-Soo;Moon, Il-Soo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.17 no.7 s.87
    • /
    • pp.889-895
    • /
    • 2007
  • A conventional kinesin, KIF5/kinesin-I, is composed of two kinesin heavy chains (KHCs) and two kinesin light chains (KLCs) and binds directly to microtubules. KIF5 motor mediates the transport of various membranous organelles, but the mechanism how they recognize and bind to a specific cargo has not yet been completely elucidated. Here, we used the yeast two-hybrid system to identify the neuronal protein(s) that interacts with the tetratricopeptide repeats (TRP) of KLCI and found a specific interaction with JNK/stress-activated protein kinase-associated protein 1 (JSAP1/JIPP3). The yeast two-hybrid assay demonstrated that the TRP 1,2 domain-containing region of KLCI mediated binding to the leucine zipper domain of JSAP1. JSAP1 also bound to the TRP region of lac2 but not to neuronal KIF5A, KIF5C and ubiquitous KIF5B in the yeast two-hybrid assay. In addition, these proteins showed specific interactions in the GST pull-down assay and by co-immunoprecipitation. KLCI and KIF5B interacted with GST-ISAP1 fusion proteins, but not with GST alone. An antibody to JSAPI specifically co-immunoprecipitated KIF5s associated with JSAP1 from mouse brain extracts. These results suggest that JSAP1, as KLC1 receptor, is involved in the KIF5 mediated transport.