• Title/Summary/Keyword: KOGAS DME process

Search Result 9, Processing Time 0.02 seconds

Optimization of KOGAS DME Process From Demonstration Long-Term Test (KOGAS DME 공정의 실증 시험을 통한 최적화 기술개발)

  • Chung, Jongtae;Cho, Wonjun;Baek, Youngsoon;Lee, Changha
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.559-571
    • /
    • 2012
  • Dimethyl ether (DME) is a new clean fuel as an environmentally-benign energy resource. DME can be manufactured from various energy sources including natural gas, coal, and biomass. In addition to its environmentally friendly properties, DME has similar characteristics to those of LPG. The aim of this article is to represent the development of new DME process with KOGAS's own technologies. KOGAS has investigated and developed new innovative DME synthesis process from synthesis gas in gaseous phase fixed bed reactor. DME has been traditionally produced by the dehydration of methanol which is produced from syngas, a product of natural gas reforming. This traditional process is thus called the two-step method of preparing DME. However, DME can also be manufactured directly from syngas (single-step). The single-step method needs only one reactor for the synthesis of DME, instead of two for the two-step process. It can also alleviate the thermodynamic limitations associated with the synthesis of methanol, by converting the produced methanol into DME, thereby potentially enhancing the overall conversion of syngas into DME. KOGAS had launched the 10 ton/day DME demonstration plant project in 2004 at Incheon KOGAS LNG terminal. In the mid of 2008, KOGAS had finished the construction of this plant and has successively finished the demonstration plant operation. And since 2008, we have established the basic design of commercial plant which can produce 3,000 ton/day DME.

Preliminary Feasibility Study for Commercial DME Plant Project (DME 상용화 플랜트 예비 타당성 조사)

  • Mo, Younggi;Kang, Minseo;Song, Taekyoung;Baek, Youngsoon;Cho, Wonjun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.2
    • /
    • pp.173-182
    • /
    • 2014
  • Dimethyl ether (DME) is a new clean fuel as an environmentally-being energy resources. DME has similar characteristics to those of LPG and can be substituted Diesel fuel. KOGAS has investigated and developed new innovative DME synthesis process from synthesis gas with KOGAS's own technologies. KOGAS had finished the construction of 10ton/day DME demonstration plant in 2008, we have established the basic design of commercial plant which can produce 3,000ton/day DME. Specifically, an economic model for a commercial DME project will be presented. It accounts for all the major cost factors that are considered in a commercial scale project as the model input for performing cash flow analysis, after which key economic indicators are produced including the internal rate of return (IRR), net present value (NPV). Sensitivity analysis is performed to identify dominant cost factors to the project economics and quantify their impact. The inputs to the economic analysis will be based on representative cost factors from the commercial-scale design of KOGAS' direct DME process supplemented by literature data. Case study results will be presented based on recent commercialization projects.

Production of DME from CBM by KOGAS DME Process (KOGAS DME 공정을 이용한 CBM으로부터 DME 생산)

  • Cho, Won-Jun;Mo, Yong-Gi;Song, Taek-Yong;Lee, Hyen-Chan;Baek, Young-Soon;Denholm, Douglas;Ko, Glen;Choi, Chang-Woo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.6
    • /
    • pp.925-933
    • /
    • 2011
  • The traditional feedstock for dimethyl ether (DME) has been natural gas obtained by pipeline from a nearby natural gas or oil field. This report focuses on other feedstock: Coal bed methane (CBM). The resource availability and suitability of CBM for DME manufacturing have been investigated. CBM in a short time has become an important industry, providing an abundant clean-burning fuel and also suggesting as a feedstock for gas industry. The use of CBM will have very little impact on the KOGAS' DME process design and economics up to 50 vol% of $CO_2$ in the CBM source. Many of the CBM sources in Asia are high in $CO_2$, but pose no difficulties for the KOGAS' DME plant. Since tri-reformer requires substantial $CO_2$ in its feed, no $CO_2$ removal from the CBM feed is needed. The $CO_2$ in the CBM means that less $CO_2$ needs to be recycled from the downstream in the process.

The Study of KOGAS DME Process in Small and Medium Sized Gas Field Containing $CO_2$ ($CO_2$가 함유된 중소규모 가스전을 위한 KOGAS DME Process 연구)

  • Mo, Yong-Gi;Cho, Won-Jun;Song, Taek-Yong;Baek, Young-Soon
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.4
    • /
    • pp.51-55
    • /
    • 2010
  • The global activities to reduce the $CO_2$ emission as a greenhouse gas have been various efforts. Under this circumstance, small and medium sized gas field containing $CO_2$ to develop as LNG is not economic feasibility. Particularly, for the separation of $CO_2$ in gas field, separation facilities should be installed to add. This is and increase in plant construction cost and separated $CO_2$ emission into the atmosphere is not the result of greenhouse gas reduction. When the uneconomic gas field apply the KOGAS DME process, the gas field containing $CO_2$ can be increase economic feasibility because of natural gas and $CO_2$ can be use to resource gas. The Tri-reformer produced syngas as H2 and CO in KOGAS DME process and the resource gases are natural gas, steam, oxygen and $CO_2$. The $CO_2$ is used as raw material gases from recover $CO_2$ in DME process. In this study, we investigated range of application of $CO_2$ in gas field.

A Computational Study on DME HCCI Combustions Characteristics with Methanol Concentrations (DME HCCI 운전조건에서 Methanol 분율에 따른 HCCI엔진연소 특성에 관한 수치해석적 연구)

  • Lee, Hyowon;Lim, Ocktaeck;Park, Kyuyeol;Cho, Wonjun;Baek, Youngsoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.1
    • /
    • pp.79-86
    • /
    • 2014
  • In Dimethyl Ether (DME) indirect production processes, DME have a reforming process to separate Methanol. DME has a high cetane number and Methanol has a high octane number. Each fuel has a different combustion characteristics and reactivity. So, this paper was investigated on the combustion characterisitics of DME and Methanol. Basically, Methanol has a effect of retarding ignition. However, Within 10% of total carbon mole number in DME, Methanol slightly changed the onset timing of Low Temperature Reaction (LTR) with increasing thermal-ignition preparation range. It means that controlling combustion phasing of DME can be possible without eliminated LTR. In case of IMEP, the ranges.

Development of Direct DME Synthesis Process (DME 직접 합성공정 기술개발)

  • Mo, Yong-Gi;Cho, Won-Jun;Baek, Young-Soon
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.3
    • /
    • pp.41-45
    • /
    • 2010
  • The physical properties of DME(Dimethyl Ether) are very similar to LPG and well-mixed. As cetane number of DME is similar to diesel fuel that can replace diesel fuel and alternative energy. DME is a clean energy source that can be manufactured from various raw materials such as natural gas, CBM(Coal Bed Methane) and biomass. DME has no carbon-carbon bond in its molecular structure and its combustion essentially generates no soot as well as no SOx. The development of DME process in KOGAS have 4 section. First, syngas section can be manufactured various syngas ratio. This completes the tri-reforming process for the synthesis gas ratio of approximately 4.0 to 1.0 range can be adjusted. Second, $CO_2$ is removed from the $CO_2$ removal section of about 92~99%, so the maximum concentration of $CO_2$ entering the DME synthesis reactor should not exceed 8%. Third, in the DME synthesis section, if the temperature of DME reactor increases, the activity of DME catalyst increased. but for the long-term activity is desirable to maintain the proper temperature. Finally, the purity of DME in the DME purification section is over 99.6%.

Experimental Study of Hydrogen and Syngas Production over Ni/Ce-ZrO2/Al2O3 Catalysts with Additives (Ni/Ce-ZrO2/Al2O3 촉매의 첨가제에 따른 수소 및 합성가스 생성에 대한 실험적 연구)

  • Cho, Wonjun;Yu, Hyejin;Mo, Yonggi;Ahn, Whaseung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.2
    • /
    • pp.105-113
    • /
    • 2014
  • Performance tests on $Ni/Ce-ZrO_2/Al_2O_3$ catalysts with additives (MgO, $La_2O_3$) were investigated in the combined reforming processes (SCR, ATR, TRM) in order to produce hydrogen and carbon monoxide (it is called "syngas".). The catalyst characterization was conducted using the BET surface analyzer, X-ray diffraction (XRD), SEM, TPR and TGA. The combined reforming process was developed to adjust the syngas ratio depending on the synthetic fuel (methanol, DME and GTL) manufacturing processes. Ni-based catalysts supported on alumina has been generally recommended as a combined reforming reaction catalyst. It was found that both free NiO and complexed NiO species were responsible for the catalytic activity in the combined reforming of methane conversion, and the $Ce-ZrO_2$ binary support employed had improved the oxygen storage capacity and thermal stability. The additives, MgO and $La_2O_3$, also seemed to play an important role to prevent the formation of the carbon deposition over the catalysts. The experimental results were compared with the equilibrium data using a commercial simulation tool (PRO/II).

A Study on Separation Process for Over 95 wt% DME Recovery from DME Mixture Gases (DME 혼합가스로부터 95 wt% 이상의 DME 회수를 위한 분리공정 연구)

  • Lim, Gye-Gyu;Park, Seung-Kyu;Rho, Jea-Hyun;Baek, Young-Soon
    • Clean Technology
    • /
    • v.15 no.4
    • /
    • pp.287-294
    • /
    • 2009
  • In order to separate the fuel-grade DME from the product of a direct DME synthesise reaction, containing 19~20% of DME, an absorption column and a purification column were employed. In the DME absorption column, the flow rate of the methanol required to recover more than 99% of DME at 50 bar was estimated by the correlation obtained from the lab-scale experiments. In the DME purification column, the maximum DME recovery of 98.2% could be obtained even from the side stream at the 3rd stage above the feed stage, since the feed stream originated from the product of the absorption column had already contained a large amount of DME (20~30 mol%) and only a small amount of light products such as $CO_2$ and $N_2$ (5~10 mol%).

A Study for Carbon Dioxide Removal Process Using N-Methyl-2-Pyrrolidone Solvent in DME Production Process (DME 생산공정에서 노말 메틸 피로리돈(N-Methyl-2-Pyrrolidone) 용매를 이용한 이산화탄소 제거공정 연구)

  • Jung, Jongtae;Roh, Jaehyun;Cho, Jungho
    • Clean Technology
    • /
    • v.18 no.4
    • /
    • pp.347-354
    • /
    • 2012
  • In this study, simulation works have been performed for the $CO_2$ removal process contained in the DME production process using NMP (N-methyl-2-pyrrolidone) as a solvent. PRO/II with PROVISION release 9.1 at Invensys was used as a chemical process simulator and NRTL activity coefficient model with Henry's law option and Soave-Redlich-Kwong equation of state were used for thermodynamic models. For the determination of the binary interaction parameters in NRTL model, regression works have been performed to match the experimental thermodynamic data. Optimal feed tray location which minimizes the reboiler heat duty was determined.