• Title/Summary/Keyword: KR 31378

Search Result 12, Processing Time 0.037 seconds

Characterization of the Physicochemical Properties of KR-31378

  • Sohn, Young-Taek;Park, Bo-Ye
    • Archives of Pharmacal Research
    • /
    • v.26 no.7
    • /
    • pp.526-531
    • /
    • 2003
  • KR-31378 is a new drug candidate intended for the use in the prevention of ischemia-reperfusion damage. The objective of this preformulation study was to determine the physicochemical properties of KR-31378. The n-octanol to water partition coefficients of KR-31378 were 0.0504 at pH 3 and 0.8874 at pH 10. Accelerated stability of KR-31378 in solution and solid state was studied at 5, 40, $60^{\circ}C$. The stability testing indicated that the t90 for the drug in solid was estimated to be 2 years and 128.6 days at $25^{\circ}C$, while the that in aquesou solution was 68.6 days at $25^{\circ}C$. The KR-31378 was also found to be unstable under the relative humidity of 76%, probably because of the hygroscopic nature of the drug. In order to study compatibility of KR-31378 with typical excipients, potential change in differential scanning calorimetry spectrum was studied in 1:1 binary mixtures of KR-31378 and Aerosil, Avicel, Eudragit, lactose, PEG, talc, CMC, PVP, starch. As a result, CMC, PVP, and starch were found to be incompatible with KR-31378, indicating the addition of these excipients may complicate the manufacturing of the formulation for the drug. Particle size distribution of KR-31378 powder was in the size range of 9-93 $\mu$ m with the mean particle size of 37.9 $\mu$ m. The flowability of KR-31378 was apparently inadequate, indicating the granulation may be necessary for the processing of the drug to solid dosage forms. Crystallization of the drug with a number of organic solvents did not lead a crystalline polymorphism. In addition, dissolution of the drug from the powder was adequately rapid at $37^{\circ}C$ in water.

KR 31378, a Potent Antioxidant, Inhibits Apoptotic Death of A7r5 Cells

  • Kim, Ki-Young;Kim, Byeong-Gee;Kim, Sun-Ok;Yoo, Sung-Eun;Hong, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.5
    • /
    • pp.381-388
    • /
    • 2001
  • This work describes the pharmacological inhibition by KR 31378 and its acetyl metabolite, KR 31612, of the apoptotic cell death induced by $H_2O_2$ in the A7r5 cells. Exposure of A7r5 cells to $H_2O_2$ (0.5 mM) induced a concentration-dependent cytotoxicity in association with oligonucleosomal DNA fragmentation. $H_2O_2-induced$ cell death was potently suppressed by KR 31378, KR 31612, ${\alpha}-tocopherol$ or trolox. Additionally, the apoptotic death of A7r5 cells (DNA ladders on electrophoresis) was also strongly suppressed by KR 31378 and KR 31612, but to a less degree by ${\alpha}-tocopherol$ and trolox. As a mechanistic study, incubation with $H_2O_2$ markedly showed a decreased Bcl-2 level and, in contrast, increased Bax protein and cytochrome C release, which were significantly and concentration-dependently reversed by KR 31378 and KR 31612 as well as by ${\alpha}-tocopherol$ and trolox. KR 31378 and ${\alpha}-tocopherol$ significantly reduced lipid peroxidation in accordance with reduced intracellular ROS and peroxyl radical. These results suggest that KR 31378 has a therapeutic potential against the apoptotic injury via mediation of anti- oxidative stress.

  • PDF

Effects of a New Neuroprotective Agent KR-31378 on Liver Cytochrome P450s in Male Sprague Dawley Rats

  • Jeong, Tae-Cheon;Kim, Ji-Young;Ji, Hye-Young;Lee, Dong-Ha;Kim, Sun-Ok;Lim, Hong;Yoo, Sung-Eun;Lee, Hye-Suk
    • Archives of Pharmacal Research
    • /
    • v.26 no.10
    • /
    • pp.800-804
    • /
    • 2003
  • The effects of KR-31378, a neuroprotective agent for ischemia-reperfusion damage, on liver microsomal cytochrome P450s (CYPs) were investigated in male Sprague Dawley rats. When rats were treated orally with KR-31378 for 7 consecutive days, CYP3A-selective erythromycin N-demethylase (ERDM) activity was significantly induced in a dose-dependent manner. In Western immunoblotting, CYP 3A proteins were clearly induced by treatment with KR-31378. Within 24 h after treatment with 80 mg/kg of KR-31378, ERDM activity was induced in liver microsomes in accompanied by induction of the level of CYP 3A proteins. The present results suggest that KR-31378 might modulate the expression of CYP 3A enzymes in humans.

Kinetic Characterization of Brain Distribution for KR-31378 in Rats

  • Kim, Ji-Hye;Shim, Chang-Koo;Chung, Suk-Jae
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.421.2-421.2
    • /
    • 2002
  • Recent studies show that KR-31378 [(2S.3SAR)-N"-cyano-N-(6-amino-3A-dihydro-3-hydroxy-2-methyl-2-dimethoxymethyl-2H-benzopyran-4-yl)-N${\cdots}$-benzylguanidine] has the neuroprotective effect as evidenced by the limitation of the size of infarct of the ischemia-reperfusion injury after an administration of KR-31378. In the literature. however. kinetics of KR-31378 distribution into the brain has not been systematically studied. (omitted)

  • PDF

Simultaneous Determination of the Novel Neuroprotective Agent KR-31378 and its Metabolite KR-31612 Using High Performance Liquid Chromatography with Tandem Mass Spectrometry in Human Plasma

  • Kim, John;Ji, Hye-Young;Yoo, Sung-Eun;Kim, Sun-Ok;Lee, Dong-Ha;Lim, Hong;Lee, Hye-Suk
    • Archives of Pharmacal Research
    • /
    • v.25 no.5
    • /
    • pp.647-651
    • /
    • 2002
  • An LC/MS/MS method for the simultaneous determination of a neuroprotective agent for ischemia-reperfusion damage, KR-31378 and its N-acetyl metabolite KR-31612 in human plasma was developed. KR-31378, KR-31612 and the internal standard. KR-31543 were extracted from human plasma by liquid-liquid extraction. A reverse-phase HPLC separation was performed on Luna phenylhexyl column with the mixture of acetonitrile-5 mM ammonium formate (55:45, v/v) as mobile phase. The detection of analytes was performed using an electrospray ionization tandem mass spectrometry in the multiple reaction monitoring mode. The lower limits of quantification for KR-31378 and KR-31612 were 2.0 ng/ml. The method showed a satisfactory sensitivity, precision, accuracy, recovery and selectivity.

Protective Effect of KR-31378 on Oxidative Stress in Cardiac Myocytes

  • Kim Mi-Young;Lee Sunkyung;Yi Kyu Yang;Yoo Sung Eun;Lee Dong-Ha;Lim Hong;Kim Ho Soon;Lee Soo Hwan;Baik Eun Joo;Moon Chang-Hyun;Jung Yi-Sook
    • Archives of Pharmacal Research
    • /
    • v.28 no.12
    • /
    • pp.1358-1364
    • /
    • 2005
  • In this study, we investigated whether a novel anti-ischemic $K_{ATP}$ opener KR-31378 [(2S,3S,4R)­N'-cyano-N-(6-amino-3,4-dihydro-3-hydroxy-2 -methly-2-dimethoxymethly-2H-benzopyran-4-yl)­N'-benzylguanidine] has protective effect against oxidative stress-induced death in heart-derived H9c2 cells. Cell death was induced by BSO, butionine sulfoximine, which inhibits GSH synthesis and subsequently increases reactive oxygen species (ROS) level. Cell death was quantitatively determined by measuring lactate dehydrogenase (LDH) activity and stained by Hoechst 33258. BSO-induced ROS production and mitochondrial membrane potential (MMP) were measured using 2',7'-dichlorofluorescein diacetate oxidation and rhodamine 123, respectively. Both the LDH release and the ROS elevation induced by treatment of H9c2 cells with 10 mM BSO, were significantly decreased by KR-31378. These protective effect and antioxidant effect of KR-31378 appeared to be independent on $K_{ATP}$ channel opening. Cells exposed to BSO showed an early reduction in MMP, and this reduction in MMP was significantly reversed by treatment with KR-31378. Caspase-3 activity in BSO treated H9c2 cells was remarkably increased, and this increased caspase-3 activity was significantly reversed by KR-31378. In conclusion, our results suggest that KR-31378 can produce cardioprotective effect against oxidative stress-induced cell death through antioxidant mechanism.

A novel potassium channel opener, KR-31378, protects cortex neurons from oxidative injury by restoring antioxidant enzyme activities and glutathione levels

  • Kim, Sun-Ok;Cho, In-Sun;Lee, Dong-Ha;Lim, Hong;Yoo, Sung-Eun
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.197.1-197.1
    • /
    • 2003
  • Neuronal hyperexcitability followed by high level of intracellular calcium and oxidative stress play critical roles in neuronal cell death in stroke and neurotrauma. Hence, KR-31378, a novel benzopyran derivative was designed as a new therapeutic strategy for neuroprotection possessing both anti-oxidant and potassium channel modulating activities. In the present study, we tested for its neuroprotective efficacy against oxidative stress-induced cell death in primary cortical cultures and further investigated its neuroprotective mechanism. (omitted)

  • PDF

Inhibition of Atherosclerotic Lesion by KR-31378 in LDL Receptor Null Mice

  • Kim, Jiyun;Nam, Ki-Hoan;Choi, Jae-Hoon;Kim, Hyoung-Chin;Yang, Sung-Don;Kang, Joo-Hyung;Ryu, Young-Han;Kim, Eun-Young;Kim, Sun-Ok;Yoo, Sung-Eun;Oh, Goo-Taeg
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.195-195
    • /
    • 2003
  • The recruitment and infiltration of monocytes into the artery wall is a crucial early step in atherogenesis. KR-31378 has been shown to be a neuroprotective agent in rat brain via its potent antioxidant and antiapoptotic actions. Here, we report the effects of this compound on atherogenesis, and some possible mechanisms of action.(omitted)

  • PDF