• Title/Summary/Keyword: KR-31543

Search Result 7, Processing Time 0.024 seconds

In Vitro Metabolism of a New Neuroprotective Agent, KR-31543 in the Human Liver Microsomes : Identification of Human Cytochrome P450

  • Ji, Hye-Young;Lee, Seung-Seok;Yoo, Sung-Eun;Kim, Hosoon;Lee, Dong-Ha;Lim, Hong;Lee, Hye-Suk
    • Archives of Pharmacal Research
    • /
    • v.27 no.2
    • /
    • pp.239-245
    • /
    • 2004
  • KR-31543, (2S,3R,4S)-6-amino-4-[N-(4-chlorophenyl)-N-(2 -methyl-2H-tetrazol-5-ylmethyl) amino]-3,4-dihydro-2-dimethoxymethyl-3-hydroxy-2-methyl-2H-1-benzopyran, is a new neuroprotective agent for preventing ischemia-reperfusion damage. This study was performed to identify the metabolic pathway of KR-31543 in human liver microsomes and to characterize cytochrome P450 (CYP) enzymes that are involved in the metabolism of KR-31543. Human liver microsomal incubation of KR-31543 in the presence of NADPH resulted in the formation of two metabolites, M1 and M2. M1 was identified as N-(4-chlorophenyl)-N-(2-methyl-2H-tetrazol-5-ylmethyl)amine on the basis of LC/MS/MS analysis with a synthesized authentic standard, and M2 was suggested to be hydroxy-KR-31543. Correlation analysis between the known CYP enzyme activities and the rates of the formation of M 1 and M2 in the 12 human liver microsomes have showed significant correlations with testosterone 6$\beta$-hydroxylase activity (a marker of CYP3A4). Ketoconazole, a selective inhibitor of CYP3A4, and anti-CYP3A4 monoclonal antibodies potently inhibited both N-hydrolysis and hydroxylation of KR-31543 in human liver microsomes. These results provide evidence that CYP3A4 is the major isozyme responsible for the metabolism of KR-31543 to M1 and M2.

Metabolism of a New Neuroprotective Agent for Ischemia-Reperfusion Damage, KR-31543 in the Rats using Liquid Chromatography/Electrospray Mass Spectrometry

  • Kim, John;Ji, Hye-Young;Lee, Seung-Seok;Yoo, Sung-Eun;Kim, Sun-Ok;Lee, Dong-Ha;Lim, Hong;Lee, Hye-Suk
    • Archives of Pharmacal Research
    • /
    • v.25 no.5
    • /
    • pp.664-668
    • /
    • 2002
  • KR-31543,(2S,3R,4S)-6-amino-4-[N-(4-chlorophenyl)-N-(2-methyl-2H-tetrazol-5-ylmethyl)amino]-3,4-dihydro-2-dimethoxymethyl-3-hydroxy-2-methyl-2H-1-benzopyran is a new neuroprotetive agent for ischemia-reperfusion damage. The in vitro and in vivo metabolism of KR-31543 in rats has been studied by LC-electrospray mass spectrometry. Rat liver microsomal incubation of KR-31543 in the presence of NADPH resulted in the formation of a metabolite M1. M1 was identified as N-(4-chlorophenyl)-N-(2-methyl-2H-tetrazol-5-ylmethyl)amine on the basis of LC-MS/MS analysis with the synthesized authentic standard. Rat CYP3A1 and 3A2 are the major CYP isozymes involved in the formation of M1.

In vitro metabolism of a new protective agent, KR-31543 in human liver microsomes

  • Ji, Hye-Young;Kim, Sook-Jin;Lee, Hong-Il;Lee, Seung-Seok;Lee, Dong-Ha;Lim, Hong;Lee, Hye-Suk
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.286.2-287
    • /
    • 2003
  • The purpose of this paper was to identify the metabolic pathway of a new neuroprotective agent, KR-31543 for ischemia-reperfusion damage in human liver microsomes and characterize cytochrome P450 (CYP) enzymes involved in the in vitro metabolism of KR-31543 generates two metabolites in human liver microsomes : M1, N-(4-chlorophenyl)-N-(2-methyl-2H-tetrazol-5-ylmethyl)amine and M2, hydroxy-KR-31543. (omitted)

  • PDF

Dose-Independent Pharmacokinetics of a New Neuroprotective Agent for Ischemia-Reperfusion Damage, KR-31543, after Intravenous and Oral Administration to Rats: Hepatic and Intestinal First-Pass Effects

  • Lee, Mi-Hye;Lee, Dae-Young;Bae, Soo-Kyung;Kim, Eun-Jung;Kim, Yoon-Gyoon;Kim, Sun-Ok;Lee, Dong-Ha;Lim, Hong;Yoo, Sung-Eun
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.312.2-313
    • /
    • 2003
  • The purpose of this study was to report dose-independent pharmacokinetics of KR-31543, a new neuroprotective agent for ischemia-reperfusion damage, after intravenous and oral administration and first-pass effects after intravenous. intraportal, intragastric, and intraduodenal administration in rats. After intravenous (10, 20 and 50 mg/kg) and oral (10, 20 and 50 mg/kg) administration, the pharmacokinetic parameters of KR-31543 were dose-independent. (omitted)

  • PDF

Simultaneous Determination of the Novel Neuroprotective Agent KR-31378 and its Metabolite KR-31612 Using High Performance Liquid Chromatography with Tandem Mass Spectrometry in Human Plasma

  • Kim, John;Ji, Hye-Young;Yoo, Sung-Eun;Kim, Sun-Ok;Lee, Dong-Ha;Lim, Hong;Lee, Hye-Suk
    • Archives of Pharmacal Research
    • /
    • v.25 no.5
    • /
    • pp.647-651
    • /
    • 2002
  • An LC/MS/MS method for the simultaneous determination of a neuroprotective agent for ischemia-reperfusion damage, KR-31378 and its N-acetyl metabolite KR-31612 in human plasma was developed. KR-31378, KR-31612 and the internal standard. KR-31543 were extracted from human plasma by liquid-liquid extraction. A reverse-phase HPLC separation was performed on Luna phenylhexyl column with the mixture of acetonitrile-5 mM ammonium formate (55:45, v/v) as mobile phase. The detection of analytes was performed using an electrospray ionization tandem mass spectrometry in the multiple reaction monitoring mode. The lower limits of quantification for KR-31378 and KR-31612 were 2.0 ng/ml. The method showed a satisfactory sensitivity, precision, accuracy, recovery and selectivity.

Determination of a Novel Antiangiogenic Agent KR-31831 in Rat Plasma by Liquid Chromatography-Tandem Mass Spectrometry

  • Kim, Sook-Jin;Lee, Seung-Seok;Ji, Hye-Young;Lee, Hong-Il;Lee, Seon-Kyoung;Yi, Kyu-Yang;Yoo, Seong-Eun;Hwang, Jeong-Sook;Lee, Hye-Suk
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.217.2-217.2
    • /
    • 2003
  • A liquid chromatography-tandem mass spectrometric (LC/MS/MS) method was developed for the determination of a new anti-angiogenic drug KR-31831 in rat plasma. KR-31831 and internal standard, KR-31543 were extracted from rat plasma with dichloromethane at basic pH. A reverse-phase LC separation was performed on Luna C8 column with the mixture of acetonitrile-ammonium formate (10 mM, pH 4.5) (67:33, v/v) as mobile phase. The detection of analytes was performed using an electrospray ionization tandem mass spectrometry in the multiple-reaction-monitoring mode. (omitted)

  • PDF